Climatic Change

, Volume 37, Issue 4, pp 683–708 | Cite as

Model Computations on the Effects of Elevating Temperature and Atmospheric CO2 on the Regeneration of Scots Pine at the Timber Line in Finland

  • Seppo Kellomäki
  • Hannu Väisänen
  • Taneli Kolström


Based on model computations, the regeneration of Scots pine (Pinus sylvestris L.) was studied at the northern timber line in Finland (70°N) in relation to elevating temperature and atmospheric CO2. If a transient increase of 4°C was assumed during the next 100 years, the length of growing season increased from the current 110–120 days to 150–160 days. This was associated with ca. 5°C increase in the soil temperature over June–August with larger variability in temperature and deeper freezing of the soil due to the reduced depth and duration of the snow cover. At the same time, the moisture content of the surface soil decreased ca. 10% and was more variable, due to less infiltration of water into the soil as a consequence of the enhanced evapotranspiration and deeper freezing of the soil. The temperature elevation alone, or combined with elevating CO2, increased flowering and the subsequent seed crop of Scots pine with a decrease in the frequency of zero crops. In both cases, temperature elevation substantially increased the success of regeneration in terms of the number of seedlings produced after each seed crop. The increasing number of mature seeds was mainly responsible for the enhanced regeneration, but increasing soil temperature also increased the success of regeneration. The soil moisture was seldom limited for seed germination. In terms of the density of seedling stands, and the height and diameter growth of the seedlings, the establishment of a seedling stand was substantially improved under the combined elevation of temperature and CO2 in such a way that the temperature increased the number of mature seeds and enhanced germination of seeds and CO2 increased seedling growth. Even under the changing climatic conditions, however, the growth of the seedling stands was slow, which indicated that the northward advance of the timber line would probably be very slow, even though regeneration was no longer a limiting factor.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carter, T., Posch, M., and Tuomenvirta, H.: 1995, SilmuScen and CLIGEN. User's Guide. Guidelines for the construction of climate scenarios and use of a stochastic weather generator in Finnish Research Programme on Climate Change (Silmu). Publication of the Academy of Finland 5/95, pp. 1–62.Google Scholar
  2. Cox, B. J.: 1986, Object Oriented Programming. An Evolutionary Approach, Addison-Wesley, Reading, p. 274.Google Scholar
  3. Eamus, D. and Jarvis, P. G.: 1989, ‘The Direct Effects of Increase in the Global Atmosphere. CO2 Concentration on Natural and Commercial Temperate Trees and Forests’, Adv. Ecolog. Res. 19, 1–55.Google Scholar
  4. Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: 1980, ‘A Biochemical Model of Photosynthetic Assimilation in Leaves of C3 Species’, Planta 149, 67–90.Google Scholar
  5. Farquhar, G. G. and Wong, S. C.: 1984, ‘An Empirical Model of Stomatal Conductance’, Aust. J. Plant Physiol. 11, 191–210.Google Scholar
  6. Folse, L. J., Packard, J. M., and Grant, W. E.: 1989, ‘AI Modelling of Animal Movement in Heterogenous Habitat’, Ecol. Model. 46, 57–72.Google Scholar
  7. Forber, H.: 1976, ‘Relation Between Climatic Factors and Scots Pine Cone Crop in Poland’, Arboretum Kornikie 21, 367–331.Google Scholar
  8. Fox, J. D., Zasada, J. C., Casbarro, A. F., and Veldhuizen, R.: 1983, ‘Monte Carlo Simulation of White Spruce Regeneration After Logging in Interior Alaska’, Can. J. Forest Res. 14, 617–622.Google Scholar
  9. Henttonen, H., Kanninen, M., Nygren, M., and Ojansuu, R.: 1986, ‘The Maturation of Scots Pine Seeds in Relation to Temperature Climate in Northern Finland’, Scand. J. Forest Res. 1, 234–249.Google Scholar
  10. Hermann, R. K. and Chilcote, W. W.: 1965, ‘Effect of Seedbeds on Germination and Survival of Douglas-Fir’, Oregon State University, Forest Research Laboratory, Research Paper 4/1965, pp. 1–28.Google Scholar
  11. Hustich, I.: 1948, ‘The Scots Pine in Northernmost Finland and Its Dependence on the Climate in the Last Decades’, Acta Botanici Fennici 42, 1–75.Google Scholar
  12. Jansson, P-E.: 1991a, Soil Model User's Manual, Sveriges Lantbruksuniversitet, Uppsala, Avdelningsmeddelande 91/7, pp. 1–59.Google Scholar
  13. Jansson, P-E.: 1991b, ‘Simulation Model for Soil Water and Heat Conditions. Description of the Soil Model’, Sveriges Lantbruksuniversitet, Uppsala, Rapport 165, pp. 1–72.Google Scholar
  14. Junttila, O.: 1986, ‘Effects of Temperature on Shoot Growth in Northern Provenance of Pinus silvestris’, Tree Physiol. 1, 185–192.Google Scholar
  15. Kellomäki, S.: 1994, ‘Computations on the Influence of Changing Climate on the Soil Moisture and Productivity in Scots Pine Stands in Southern and Northern Finland’, Clim. Change 29, 35–51.Google Scholar
  16. Kellomäki, S., Hänninen, H., and Kolström, T.: 1989, ‘Model Computations on the Impact of the Climatic Change on the Productivity and Silvicultural Management of the Forest Ecosystem’, Silva Fennica 22, 293–305.Google Scholar
  17. Kellomäki, S. and Kolström, M.: 1992, ‘Simulation of Tree Species Composition and Organic Matter Accumulation in Finnish Boreal Forests Under Changing Climate’, Vegetatio 102, 47–68.Google Scholar
  18. Kellomäki, S. and Kolström, M.: 1994, ‘Computations on the Productivity of Scots Pine, Norway Spruce, Pendula Birch and Pubescent Birch in Finland as Influenced by Changing Climate’, Forest Ecol. Managem. 65, 201–217.Google Scholar
  19. Kellomäki, S. and Väisänen, H.: 1995, ‘Model Computations on the Impact of Changing Climate on Natural Regeneration of Scots Pine in Finland’, Can. J. Forest Res. 25, 929–942.Google Scholar
  20. Kellomäki, S. and Väisänen, H.: 1996, ‘Model Computations on the Effect of Rising Temperature on Soil Moisture and Water Availability in Forest Ecosystems Dominated by Scots Pine in the Boreal Zone in Finland, Clim. Change 32, 423–445.Google Scholar
  21. Kellomäki, S. and Väisänen, H.: 1997, ‘Modelling the Dynamics of the Forest Ecosystem for Climate Change Studies in Boreal Conditions’, Ecol. Model. 97, 121–140.Google Scholar
  22. Kellomäki, S., Väisänen, H., and Strandman, H.: 1993, ‘FinnFor: A Model for Calculating the Response of Boreal Forest Ecosystem to Climatic Change’, University of Joensuu, Faculty of Forestry, Res. Notes 6, 1–121.Google Scholar
  23. Koivisto, P.: 1959, ‘Growth and Yield Tables’, Communicati. Instituti Forestalis Fenniae 51(8), 1–44.Google Scholar
  24. Koski, V. and Tallqvist, R.: 1978, ‘Tuloksia monivuotisista kukinnan ja siemensadon määrän mittauksista metsäpuilla. Summary: Results of Long-Time Measurements of the Quality of Flowering and Seed Crop of Forest Trees’, Folia Forestalia 364, 1–60.Google Scholar
  25. Leemans, R. and Prentice, C. I.: 1989, ‘Forska, a General Forest Succession Model’, Meddelande från Växtbiologiska Institutionen, Uppsala, 1989(2), pp. 1–45.Google Scholar
  26. Lehto, J.: 1956, ‘—Tutkimuksia männyn luontaisesta uudistumisesta Etelä-Suomen kangasmailla. Summary: Studies on the Natural Reproduction of Scots Pine on the Upland Soils of Southern Finland’, Acta Forestalia Fennica 66(2), 1–106.Google Scholar
  27. McMahon, T.: 1973, ‘Size and Shape in Biology. Elastic Criteria Impose Limits on Biological Proportions, and Consequently on Metabolic Rates’, Science 179, 1201–1204.Google Scholar
  28. McMurtrie, R. E., Rook, D. A., and Kelliher, F. M.: 1990, ‘Modelling the Yield of Pinus radiata on a Site Limited by Water and Nitrogen’, Forest Ecol. Managem. 30, 381–418.Google Scholar
  29. Mikola, P.: 1950, ‘—Puiden kasvun vaihteluista ja niiden merkityksestä kasvututkimuksissa. Summary: On Variations in Tree Growth and Their Significance to Growth Studies’, Communicati. Instituti Forestalis Fenniae 38(5), 1–131.Google Scholar
  30. Mikola, P.: 1978, ‘Consequences of Climatic Fluctuation in Forestry’, Fennia 150, 39–43.Google Scholar
  31. Mitchell, J. F. B., Manabe, S., Mleshko, V., and Tokioka, T.: 1990, ‘Equilibrium Climate Change — and Its Implications for the Future’, in Houghton, J. T., Jenkins, G. T., and Ephraums, J. J. (eds.), Climate Change, Cambridge University Press, Cambridge, pp. 131–175.Google Scholar
  32. Mohren, G. M. J.: 1987, Simulation of Forest Growth, Applied to Douglas Fir Stand in the Netherlands, Pudoc, Wageningen, p. 184.Google Scholar
  33. Näslund, M.: 1937, ‘Skogsförsanstaltens gallringsfördök i tallskog’, Primärearbetning, Meddelanden från Statens Skogsförsöksanstalt 29, pp. 1–121.Google Scholar
  34. Oker-Blom, P.: 1985, ‘Photosynthesis of a Scots Pine Shoot: Simulation of the Irradiance Distribution and Photosynthesis of a Shoot in Different Radiation Fields’, Agric. For. Meteorol. 34, 31–40.Google Scholar
  35. Oker-Blom, P.: 1986, ‘Photosynthetic Radiation Regime and Canopy Structure in Modelled Forest Stands’, Acta Forestalia Fennica 197, 1–44.Google Scholar
  36. Pastor, J. and Post, W. M.: 1985, ‘Development of a Linked Forest Productivity-Soil Process Model’, Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/TM-9519: pp. 1–168.Google Scholar
  37. Pastor, J. and Post, W. M.: 1986, ‘Influence of Climate, Soil Moisture, and Succession on Forest Carbon and Nitrogen Cycles’, Biogeochemistry 2, 3–27.Google Scholar
  38. Pettersson, R. and McDonald, J. S.: 1994, ‘Effects of Nitrogen Supply on Acclimation of Photosynthesis to Elevated CO2’, Photosynthesis Res. 39, 389–400.Google Scholar
  39. Pelkonen, P.: 1981, ‘Investigations on Seasonal CO2 Uptake in Scots Pine’, Communicati. Instituti Forestalis Fenniae 99(5), 1–59.Google Scholar
  40. Pelkonen, P. and Hari, P.: 1980, ‘The Dependence of the Springtime Recovery of CO2 Uptake in Scots Pine on Temperature and Internal Factors’, Flora 169, 398–404.Google Scholar
  41. Pohtila, E.: 1977, ‘Reforestation of Ploughed Sites in Finnish Lapland’, Communicati. Instituti Forestalis Fenniae 91(4), 1–98.Google Scholar
  42. Pukkala, T.: 1987a, ‘—Kuusen ja männyn siemensadon ennustemalli. Abstract: A Model for Predicting the Seed Crop of Picea abies and Pinus sylvestris’, Silva Fennica 21, 135–144.Google Scholar
  43. Pukkala, T.: 1987b, ‘Simulation Model for Natural Regeneration of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens’, Silva Fennica 21, 37–53.Google Scholar
  44. Ryan, M. G.: 1995, ‘Folia Maintenance Respiration of Subalpine and Boreal Trees and Shrubs in Relation to Nitrogen Content’, Plant, Cell Environ. 18, 765–772.Google Scholar
  45. Saarenmaa, H., Stone, N. D., Folse, L. J., Packard, J. M., Grant, W. E., Makela, M. E., and Coulson, R. N.: 1988, ‘An Artificial Intelligence Modelling Approach to Simulating Animal/Habitat Interactions’, Ecol. Model. 44, 125–141.Google Scholar
  46. Sarvas, R.: 1962, ‘Investigations on the Flowering and Seed Crop of Pinus silvestris’, Communicati. Instituti Forestalis Fenniae 53(4), 1–198.Google Scholar
  47. Satoo, T.: 1966, ‘Variation in Response of Conifer Seed Germination to Soil Moisture Conditions’, Tokyo University Forest, Miscellaneous. Information 16, 17–20.Google Scholar
  48. Sequeira, R. A., Sharpe, P. J. H., Stone, N. D., El-Zik, K. M., and Makela, M. E.: 1991, ‘Object-Oriented Simulation: Plant Growth and Discrete Organ to Organ Interactions’, Ecol. Model. 58, 55–89.Google Scholar
  49. Shlaer, S. and Mellor, S. J.: 1988, Object-Oriented System Analysis: Modelling the World in Data, Englewood Cliffs, New Jersey, p. 144.Google Scholar
  50. Sirén, G.: 1961, ‘Skogsgränstallen som indikator för klimatfluktuationerna i norra Fennoskandien under historisk tid’, Communicati. Instituti Forestalis Fenniae 54(2), 3–65.Google Scholar
  51. Strandman, H., Väisänen, H., and Kellomäki, S.: 1993, ‘A Procedure for Generating Synthetic Weather Records in Conjunctions of Climatic Scenario for Modelling of Ecological Impacts of Changing Climate in Boreal Conditions’, Ecol. Model. 70, 195–220.Google Scholar
  52. Tissue, D., Thomas, R. B., and Strain, B. R.: 1993, ‘Long-Term Effects of Elevated CO2 and Nutrients on Photosynthesis and Rubisco in Loblolly Pine Seedlings’, Plant, Cell Environ. 16, 859–865.Google Scholar
  53. von Caemmerer, S. and Farquhar, G. D.: 1982, ‘Some Relationships Between the Biochemistry of Photosynthesis and the Gas Exchange of Leaves’, Planta 153, 376–387.Google Scholar
  54. Väisänen, H., Strandman, H., and Kellomäki, S.: 1994, ‘A Model to Simulate the Effects of Changing Climate on the Functioning and Structure of Boreal Forest Ecosystem: An Approach Based on Object-Oriented Design’, Tree Physiol. 14, 1081–1095.Google Scholar
  55. Waldron, R. M.: 1966, ‘Factors Affecting Natural White Spruce Regeneration on Prepared Seedbeds at Riding Mountain Experimental Area Manitoba, Canadian Department of Forestry and Rural Development, Forestry Branch, Departmental Publication 1169, 1–41.Google Scholar
  56. Wang, K.-Y., Kellomäki, S., and Laitinen, K.: 1996, ‘Acclimation of Photosynthetic Parameters in Scots Pine After Three Years Exposure to Elevated Temperature and CO2’, Agric. For. Meteorol. 82, 175–219.Google Scholar
  57. Yli-Vakkuri, P.: 1961a, ‘—Emergency and Initial Development of Tree Seedlings on Burnt-Over Forest Land, Seloste: Taimien syntymisestä ja ensikehityksestä kulotetuilla alueilla’, Acta Forestalia Fennica 74, 1–51.Google Scholar
  58. Yli-Vakkuri, P.: 1961b, ‘—Kokeellisia tutkimuksia taimien syntymisestä ja ensikehityksestä kuusikoissa ja männiköissä. Summary: Experimental Studies on the Emergency and Initial Development of Tree Seedlings in Spruce and Pine Stands’, Acta Forestalia Fennica 74, 1–51.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Seppo Kellomäki
    • 1
  • Hannu Väisänen
    • 1
  • Taneli Kolström
    • 1
  1. 1.University of Joensuu, Faculty of ForestryJoensuuFinland

Personalised recommendations