Climatic Change

, Volume 38, Issue 1, pp 87–112 | Cite as

A Bayesian Statistical Analysis of the Enhanced Greenhouse Effect

  • Richard S. J. Tol
  • Aart F. De Vos

Abstract

This paper demonstrates that there is a robust statistical relationship between the records of the global mean surface air temperature and the atmospheric concentration of carbon dioxide over the period 1870–1991. As such, the enhanced greenhouse effect is a plausible explanation for the observed global warming. Long term natural variability is another prime candidate for explaining the temperature rise of the last century. Analysis of natural variability from paleo-reconstructions, however, shows that human activity is so much more likely an explanation that the earlier conclusion is not refuted. But, even if one believes in large natural climatic variability, the odds are invariably in favour of the enhanced greenhouse effect. The above conclusions hold for a range of statistical models, including one that is capable of describing the stabilization of the global mean temperature from the 1940s to the 1970s onwards. This model is also shown to be otherwise statistically adequate. The estimated climate sensitivity is about 3.8 °C with a standard deviation of 0.9 °C, but depends slightly on which model is preferred and how much natural variability is allowed. These estimates neglect, however, the fact that carbon dioxide is but one of a number of greenhouse gases and that sulphate aerosols may well have dampened warming. Acknowledging the fact that carbon dioxide is used as a proxy for all human induced changes in radiative forcing brings a lot of additional uncertainty. Prior knowledge on both climate sensitivity and radiative forcing is needed to say anything about the respective sizes. A fully Bayesian approach is used to combine expert knowledge with information from the observations. Prior knowledge on the climate sensitivity plays a dominant role. The data largely exclude climate sensitivity to be small, but cannot exclude climate sensitivity to be large, because of the possibility of strong negative sulphate forcing. The posterior of climate sensitivity has a strong positive skewness. Moreover, its mode (again 3.8 °C; standard deviation 2.4 °C) is higher than the best guess of the IPCC.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almon, S.: 1962, ‘The Distributed Lag between Capital Appropriations and Expenditures’, Econometrica 30, 407-423.Google Scholar
  2. Arrhenius, S.: 1896, ‘On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41(251), 237-276.Google Scholar
  3. Bernardo, J. M. and Smith, A. F.M.: 1994, Bayesian Theory, John Wiley & Sons, Chichester, p. 586.Google Scholar
  4. Bloomfield, P. and Nychka, D.: 1992, ‘Climate Spectra and Detecting Climate Change’, Clim. Change 21, 275-287.Google Scholar
  5. Dansgaard, W., Johnson, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffenson, J. P., Svelnbjornsdottir, A. E., Jouzel, J., and Bond, G.: 1993, ‘Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record’, Nature 364, 218-220.Google Scholar
  6. Engle, R. F. and Granger, C. W. J.: 1987, ‘Cointegration and Error Correction: Representation, Estimation and Testing’, Econometrica 55, 661-692.Google Scholar
  7. Galbraith, J. W. andGoogle Scholar
  8. Green, C.: 1993, ‘Inference about Trend in Global Temperature Data’, Clim. Change 22, 209-221.Google Scholar
  9. Gilliland, R. L.: 1982, ‘Solar, Volcanic and CO2 Forcing of Recent Climatic Changes’, Clim. Change 4, 111-131.Google Scholar
  10. Granger, C. W. J. andGoogle Scholar
  11. Joyeux, R.: 1980, ‘An Introduction to Long-Memory Time Series Models and Fractional Differencing’, J. Time Ser. Anal. 1(1), 15-29.Google Scholar
  12. Gray, H. L. and Woodward, W. A.: 1986, ‘A New ARMA Spectral Estimator’, J. Amer. Stat. Soc. 81, 1100-1108.Google Scholar
  13. GRIP Members: 1993, ‘Climate Instability during the Last Interglacial Period Recorded in the GRIP Ice Core’, Nature 364, 203-207.Google Scholar
  14. Harvey, A.C.: 1989, Forecasting, Structural Time Series and theKalman Filter,Cambridge University Press, Cambridge, p. 554.Google Scholar
  15. Hegerl, G. C., Von Storch, H., Hasselmann, K., Santer, B. D., Cubasch, U., and Jones, P. D.: 1996, ‘Detecting Greenhouse-Gas Induced Climate Change with an Optimal Fingerprint Method’, J. Clim. 9, 2281-2306.Google Scholar
  16. Hendry, D. F.: 1993, Econometrics - Alchemy or Science?, Basil Blackwell, Oxford, p. 518.Google Scholar
  17. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.: 1990, Climate Change - The IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 365.Google Scholar
  18. Houghton, J. T., Callander, B. A., and Varney, S.K.: 1992, Climate Change 1992 - The Supplementary Report of the IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 200.Google Scholar
  19. Houghton, J. T. et al.: 1994, Climate Change 1994 - Radiative Forcing of Climate Change and An Evaluation of the IPCC 1S92 Emission Scenarios, Cambridge University Press, Cambridge, p. 339.Google Scholar
  20. Houghton, J. J., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K.: 1996, Climate Change 1995: The Science of Climate Change - Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, p. 572.Google Scholar
  21. Hoyt, D. V.: 1979, ‘An Empirical Determination of the Heating of the Earth by the Carbon Dioxide Greenhouse Effect’, Nature 282, 388-390.Google Scholar
  22. Jarque, C. M. and Bera, A. K.: 1980, ‘Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals’, Econ. Lett. 6, 225-259.Google Scholar
  23. Kuo, C., Lindberg, C., and Thompson, D. J.: 1990, ‘Coherence Established between Atmospheric Carbon Dioxide and Global Temperature’, Nature 343, 709-714.Google Scholar
  24. Lamb, H. H.: 1977, Climate: Present, Past and Future, Vol. 2, Methuen, London, p. 853.Google Scholar
  25. Lehman, S.: 1993, ‘Ice Sheets, Wayward Winds and Sea Change’, Nature 365, 109-110.Google Scholar
  26. Ljung, G. M. and Box, G. E. P.: 1978, ‘On a Measure of Lack of Fit in Time Series Models’, Biometrika 65, 297-303.Google Scholar
  27. McLeod, A. I. and Li, W. K.: 1983, ‘Diagnosis Checking ARMA Time Series Models Using Squared-Residuals Autocorrelations’, J. Time Ser. Anal. 4, 269-273.Google Scholar
  28. Morgan, M. G. and Henrion, M.: 1990, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, Cambridge, p. 332.Google Scholar
  29. Morgan, M. G. and Keith, D. W.: 1995, ‘Subjective Judgments by Climate Experts’, Environ. Sci. Technol. 29(10), 468A-476A.Google Scholar
  30. Nicholls, N., Gruza, G. V., Jouzel, J., Karl, T. R., Ogallo, L. A., Parker, D. E.: 1996, ‘Observed Climate Variability and Change’, in Houghton, J. T., Meiro Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change - Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 133-192.Google Scholar
  31. O’Hagan, A.: 1994, Kendall’s Advanced Theory of Statistics Volume 2B - Bayesian Inference, Edward Arnold, London, p. 330.Google Scholar
  32. Ramsey, J. B.: 1969, ‘Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis’, J. Roy. Stat. Soc. B31, 350-371.Google Scholar
  33. Richards, G. R.: 1993, ‘Change in Global Temperature: A Statistical Analysis’, J. Clim. 6, 546-559.Google Scholar
  34. Santer, B. D, Wigley, T.M. L., and Jones, P. D.: 1993, ‘Correlation Methods in Fingerprint Detection Studies’, Clim. Dynam. 8, 265-276.Google Scholar
  35. Santer, B. D., Bruggemann, W., Cubasch, U., Hasselmann, K., Hock, H., Maier-Raimer, E., and Mikolajewics, U.: 1994, ‘Signal-to-Noise Analysis of Time-Dependent Greenhouse Warming Experiments’, Clim. Dynam. 9, 267-285.Google Scholar
  36. Santer, B. D., Wigley, T. M. L., Barnett, T. P., and Anyamba, E.: 1996, ‘Detection of Climate Change and Attribution of Causes’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change - Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 407-444.Google Scholar
  37. Schünwiese, C.-D.: 1991, ‘A Statistical Hypothesis on Global Greenhouse-Gas-Induced Temperature Change’, Theor. Appl. Climatol. 44, 243-245.Google Scholar
  38. Schünwiese, C.-D. and Stä:ahler, U.: 1991, ‘Multiforced Statistical Assessments of Greenhouse-Gas-Induced Surface Air Temperature Change 1890-1985’, Clim. Dynam. 6, 23-33.Google Scholar
  39. Sims, C. A.: 1980, ‘Macroeconomics and Reality’, Econometrica 48, 1-48.Google Scholar
  40. Sims, C. A. and Uhlig, H.: 1991, ‘Understanding Unit Rooters: A Helicopter Tour’, Econometrica 59, 1591-1601.Google Scholar
  41. Theil, H. and Goldberger, A. G.: 1961, ‘On Pure and Mixed Statistical Estimation in Economics’, Int. Econ. Rev. 2, 65-78.Google Scholar
  42. Tol, R. S. J.: 1994, ‘Greenhouse Statistics - Time Series Analysis, Part II’, Theor. Appl. Climatol. 49, 91-102.Google Scholar
  43. Tol, R. S. J.: 1995, ‘The Damage Costs of Climate Change Toward More Comprehensive Calculations’, Environ. Resource Econ. 5, 353-374.Google Scholar
  44. Tol, R. S. J. and De Vos, A. F.: 1993, ‘Greenhouse Statistics - Time Series Analysis’, Theor. Appl. Climatol. 48, 63-74.Google Scholar
  45. Tol, R. S. J. and De Vos, A. F.: 1994, ‘Greenhouse Statistics: A Different Look at Climate Research’, in Mathai, C. V. and Stensland, G. (eds.), Global Climate Change: Science, Policy, and Mitigation Strategies, Air & Waste Management Association, Pittsburgh, pp. 206-213.Google Scholar
  46. UNEP - United Nations Environment Programme: 1989, Environmental Data Report 1989/90, 2nd edn., Basil Blackwell, Oxford, p. 352.Google Scholar
  47. Waldmeier, M.: 1961, The Sunspot Activity in the Years 1610-1960, Schulthess, Zürich.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Richard S. J. Tol
    • 1
  • Aart F. De Vos
    • 2
  1. 1.Institute for Environmental StudiesVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of EconometricsVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations