Climatic Change

, Volume 40, Issue 1, pp 7–38 | Cite as

Assessing and Mitigating N2O Emissions from Agricultural Soils

  • A.R. Mosier
  • J.M. Duxbury
  • J.R. Freney
  • O. Heinemeyer
  • K. Minami


Agricultural cropping and animal production systems are important sources of atmospheric nitrous oxide (N2O). The assessment of the importance of N fertilization from synthetic fertilizer, animal wastes used as fertilizers and from N incorporated into the soil through biological N fixation, to global N2O emissions presented in this paper suggests that this source has been underestimated. We estimate that agricultural systems produce about one fourth of global N2O emissions. Methods of mitigating these emissions are presented which, if adopted globally could decrease annual N2O emissions from cropped soils by about 20%.

N2O emissions mitigation agriculture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, S.E.: 1984, Slow-release Nitrogen Fertilizers, Hauck, R.D. (ed.), Nitrogen in Crop Productions. American Society of Agronomy, Madison, WI. pp. 195–206.Google Scholar
  2. Anderson, I.C., Levine, J.S., Poth, M.A. and Riggan, P.J.: 1988, ‘Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning’, J. Geophys. Res. 93, 3893–3898.Google Scholar
  3. Andreac, M.O., and Schimel, D.S.: 1989, Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, John Wiley & Sons, Chichester. 347 pp.Google Scholar
  4. Aulakh, M.S., Rennie, D.A., and Paul, E.A.: 1984a, ‘Gascous nitrogen losses from soils under zero-till as compared with conventional-till management systems’, J. Environ. Qual. 13, 130–136.Google Scholar
  5. Aulakh, M.S., Rennie, D.A., and Paul, E.A.: 1984b, ‘Acetylene and N-serve effects upon N2O emissions from NH4+ and N03-treated soils under aerobic and anaerobic conditions’, Soil Biol. Biochem. 16, 351–356.CrossRefGoogle Scholar
  6. Aulakh, M.S., Doran, J.W., and Mosier, A.R.: 1992, ‘Soil denitrification-significance, measurement, and effects of management’, Adv. Soil Sci. 18, 1–57.Google Scholar
  7. Banerjee, N.K., and Mosier, A.R.: 1989, ‘Coated calcium carbide as a nitrification inhibitor in upland and flooded soils’, J. Indian Soc. Soil Sci. 37, 306–313.Google Scholar
  8. Batjes, N.H., and Bridges, S.M. (eds.), 1992, World inventory of soil emission potentials. Proc. Int'l. Workshop WAG, 24–27 Aug. 1992. WISE-Report 2, Int'l. Soil Reference and Information Centre, Wageningen. 204p.Google Scholar
  9. Benckiser, G., and Simarmata, T.: 1994, ‘Environmental impact of fertilizing soils by using sewage and animal wastes’, Fertilizer Research 37, 1–22.Google Scholar
  10. Bleakley, B.H., and Tiedje, J.M.: 1982, ‘Nitrous oxide production by organisms other than nitrifiers or denitrifiers’, Appl. Environ. Microbiol. 44, 1342–1348.Google Scholar
  11. Bouwman, A.F.: 1990, Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. Bouwman, A.F. (ed.), Soils and the Greenhouse Effect, John Wiley & Sons, New York. pp. 61–127.Google Scholar
  12. Bouwman, A.F., and Sombrock, S.M,: 1990, Scharpenseel, H.W. et al., (eds.), Soils on a Warmer Earth. Elsevier: Amsterdam. pp. 15–30.Google Scholar
  13. Bouwman, A.F.: 1993, ‘The global source distribution of nitrous oxide’, in van Amstel, A.R.(ed.), Methane and Nitrous Oxide, RIVM report no. 481507003, National Institute of Public Health and Environmental Protection, Bilthoven, the Netherlands. pp 261–272.Google Scholar
  14. Bouwman, A.F.: 1994, ‘Estimated global source distribution of nitrous oxide’. in Minami, K., Mosier, A., and Sass, R. (eds.), CH4 and N2 O Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, NIAES Series 2. Yokendo Publishers, Tokyo. pp. 147–159.Google Scholar
  15. Bouwman, A.F., van Der Hoek, K.W., and Oliver, J.G.J.: 1995, ‘Uncertainty in the global source distribution of nitrous oxide’, J. Geophys. Res. 100, 2785–2800.CrossRefGoogle Scholar
  16. Bowden, W.B., and Bormann, F.H.: 1986, ‘Transport and loss of nitrous oxide in soil water after forest clear-cutting’, Science 233, 867–869.Google Scholar
  17. Bremner, J.M., and Blackmer, A.M.: 1978, ‘Nitrous oxide: Emissions from soils during nitrification of fertilizer nitrogen’, Science 199, 295–296.Google Scholar
  18. Bremner, J.M., and Blackmer, A.M.: 1979, ‘Effects of acetylene and soil water content on emissions of nitrous oxide from soils’, Nature 280, 380–381.Google Scholar
  19. Bremner, J.M., Breitenbeck, G.A., and Blackmer, A.M., 1981, ‘Effect of nitrapyrin on emission of nitrous oxide from soil fertilized with anhydrous ammonia’, Geophys. Res. Lett. 8, 353–356.Google Scholar
  20. Bronson, K.F., Mosier, A.R., and Bishnoi, S.R.: 1992, ‘Nitrous oxide emissions in irrigated corn as affected by encapsulated calcium carbide and nitrapyrin’, Soil Sci. Soc. Am. J. 56, 161–165.Google Scholar
  21. Bronson, K.F., and Mosier, A.R.: 1993, ‘Nitrous oxide emissions and methane consumption in wheat and corn-cropped systems’, in Harper, L.A., Mosier, A.R., Duxbury, J.M., and Rolston, D.E. (eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Pub. No. 55. Am. Soc Agron, Madison, WI, pp. 133–144.Google Scholar
  22. Bronson, K.F., Neue, H.U., Singh, U., and Abao, E.B.: 1994, ‘Automated chamber method for CH4 and N2O flux measurements in flooded rice soil: Residue, Nitrogen and Water Management’, Soil Sci. Soc. Am. J. 61, 981–987.Google Scholar
  23. Brumme, R., and Beese, F.: 1992, ‘Effects of liming and nitrogen fertilization on emission of CO2 and N2O from a temperate forest’, J. Geophys. Res. 97, 12851–12858.Google Scholar
  24. Bundy, L.G., and Bremner, J.M.: 1973, ‘Inhibition of nitrification in soils’, Soil Sci. Soc. Amer. Proc. 37, 396–398Google Scholar
  25. Buresh, R.J., Chua, T.T., Castillo, E.G., Liboon, S.P., and Garrity, D.P.: 1993, ‘Fallow and Sesbania effects on soil nitrogen dynamics in lowland rice-based cropping systems’, Agron. J. 85, 316–321.Google Scholar
  26. Burton, Ch., Sneath, R.W., and Farrent, J.W.: 1993, ‘Emissions of nitrogen oxide gases during aerobic treatment of animal slurries’, Bioresource Technology 45, 233–235.CrossRefGoogle Scholar
  27. CAST: 1992, Preparing U.S. Agriculture for Global Climate, Change Task Force Report, No. 119 Waggoner, P.E., Chair. Council for Agricultural Science and Technology, Ames, IA. 96 p.Google Scholar
  28. Cicerone, R.J., and Oremland, R.S.: 1988, ‘Biogeochemical aspects of atmospheric methane’, Global Biogeochem. Cycles 2, 299–327.Google Scholar
  29. Cole, C.V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N., Sauerbeck, D., Dumanski, J., Duxbury, J., Freney, J., Gupta, R., Heinemeyer, O., Kolchugina, T., Lee, J., Paustian, K., Powlson, D., Sampson, N., Tiessen, H., Van Noordwijk, M., and Zhao, Q.: 1996, ‘Agricultural Options for mitigation of greenhouse gas emissions’, Chapter 23 in Watson, R., Zinyowera, M.C., and Moss, R. (eds.), Climate Change 1995-Impacts, Adaptations and Mitigation of Climate Change: Scientific Technical Analysis, Contribution of Working Group II to the Second Assessment Report of the Intergovernmental. Panel on Climate Change, Cambridge University Press.Google Scholar
  30. Crutzen, P.J., and Ehhalt, D.H.: 1977, ‘Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer’, Ambio. 6, 112–117.Google Scholar
  31. Crutzen, P.J.: 1981, Atmospheric chemical processes of the oxides of nitrogen including nitrous oxide, Delwiche, C.C. (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide, Wiley, New York. pp. 17–44.Google Scholar
  32. Crutzen, P.J., and Andreae, M.O.: 1990, ‘Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles’, Science 250, 1669–1678.Google Scholar
  33. Denincad, O.T., Frency, J.R., and Simpson, J.R.: 1979, ‘Nitrous oxide during denitrification in a flooded field’, Soil Sci. Soc. Amer. J. 43, 716–718.Google Scholar
  34. Diekmann, K.H., De Datta, S.K., and Ottow, J.C.G.: 1993, ‘Nitrogen uptake and recovery from urea and green manure in lowland rice measured by 15N and non-isotope techniques’, Plant Soil 148, 91–99.Google Scholar
  35. Doerge, T.A., Roth, R.L., and Gardner, B.R.: 1991, ‘Nitrogen Fertilizer Management in Arizona’, College of Agriculture, University of Arizona, Tueson,87 pp.Google Scholar
  36. Duxbury, J.M., Bouldin, D.R., Terry, R.E., and Tate, R.L. III.: 1982, ‘Emissions of nitrous oxide from soils’, Nature 298, 462–464.Google Scholar
  37. Duxbury, J.M., and McConnaughey, P.K.: 1986. ‘Effect of fertilizer source on denitrification and nitrous oxide emissions in a maize field’, Soil Sci. Soc. Am. J. 50, 644–648.Google Scholar
  38. Duxbury, J.M., and Mosier, A.R.: 1993, Status and issues concerning agricultural emissions of greenhouse gases, Kaiser, H.M. and Drennen, T.E., (eds.), Agricultural Dimensions of Global Climate Change, St. Lucie Press, Delray Beach, FI. p. 229–258.Google Scholar
  39. Duxbury, J.M., Harper, L.A., and Mosier, A.R.: 1993, Contributions of agroecosystems to global climate change, Harper, L.A., Mosier, A.R., Duxbury, J.M., and Rolston, D.E. (eds.), Agricultural Eeosystem Effects on Trace Gases and Global Climate Change, ASA Special Pub. No. 55. Am. Soc. Agron., Inc. Madison, WI, pp. 1–18.Google Scholar
  40. Eichner, M.J.: 1990, ‘Nitroux oxide emissions from fertilized soils: Summary of available data’, J. Environ. Qual. 19, 272–280.Google Scholar
  41. Erich, M.S., Bekerie, A., and Duxbury, J.M.: 1984, ‘Activities of denitrifying enzymes in freshly sampled soils’, Soil Sci. 138, 25–32.Google Scholar
  42. FAO.: 1990a, Fertilizer Yearbook, Volume 39. FAO statisties series No. 95. FAO, Rome.Google Scholar
  43. FAO.: 1990b, Production Yearbook, Volume 43. FAO statisties series No. 94. FAO, Rome.Google Scholar
  44. Freney, J.R., Denmead, O.T., Watanabe, I., and Craswell, E.T.: 1981, ‘Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice’, Aust. J. Agric. Res. 32, 37–45.Google Scholar
  45. Freney, J.R., and Simpson, J.R.: 1983, Gaseous Loss of Nitrogen from Plant-Soil Systems. Martinus Nijhoff/Dr W. Junk Publishers, The Hague.Google Scholar
  46. Freney, J.R., Simpson, J.R., and Denmead, O.T.: 1983, Volatilization of ammonia, Freney, J.R. and Simpson, J.R. (eds.), Gaseous Loss of Nitrogen from Plant-Soil Systems, Martinus Nijhoff/Dr W. Junk Publishers, The Hague. pp. 1–32.Google Scholar
  47. Freney, J.R., and Black, A.S.: 1988, Imporiance of ammonia volatilization as a loss process, Wilson, J.R. (ed.), Advances in Nitrogen Cycling in Agricultural Ecosystems, C.A.B. International, Wallingford, pp. 156–173.Google Scholar
  48. Galbally, I.E., and Gillett, R.W.: 1988, Rodhe, H. and Herrera, R. (eds.), Acidification in Tropical Countries, J. Wiley & Sons: Chichester, pp. 73–116.Google Scholar
  49. Galbally, I.E.: 1992, Proceedings of IGBP Workshop No. 14., Canberra, Oct.3–5, 1990.Google Scholar
  50. Galbally, I.E., Fraser, P.J., Meyer, C.P., and Griffith, D.W.T.: 1992, Biosphere-atmosphere exchange of trace gases over Australia, Gifford, R.M. and Barson, M.M. (eds.), Australia's Renewable Resources: Sustainability and Global Change. Bureau of Rural Resources No. 14, P.J. Grills, Commonwealth Printer, Canberra, pp. 117–149.Google Scholar
  51. Garcia-Mendez, G., Maass, J.M., Matson, P.A., and Vitousek, P.M.: 1991, ‘Nitrogen transformations and nitrous oxide flux in a tropical deciduous forest in Mexico’, Oceologia 88, 362–366.Google Scholar
  52. Gottschall, R.: 1984, Kompostierung — Optimale Aufhereitung und Verwendung organischer Materialien in Oekologischen Landbau, Verlag C.F. Mueller, (Alternative Konzepte; 45), Karlsruhe, Deutschland, 296 Seiten.Google Scholar
  53. Goodroad, L.L., and Keeney, D.R.: 1984, ‘Nitrous oxide production in aerobic soils under varying pH, temperature and water content’, Soil Biol. and Biochem. 16, 39–43.CrossRefGoogle Scholar
  54. Granli, M. T., and Bockman, O.C.: 1994, Nitrous oxide from agriculture, Norwegian J. Agric. Sci. Supplement No. 12. 128p.Google Scholar
  55. Groenenstein, C.M.: 1993, Animal waste management and emission of ammonia from liveslock housing systems: field studies, E. Boon C. (ed.). Livestock Environment IV Proceedings of a conference held in Coventry, UK, 6–9 July 1993. Collins, St. Joseph: American Society of Agricultural Engineers. pp. 1169–1175.Google Scholar
  56. Hammond, A.L.: 1990, World Resources 1990–91, A report by the World Resources Institute, Oxford Univ. Press, Oxford, UK. 383 pp.Google Scholar
  57. Hao, W.M., Wofsy, M.B., McElroy, M.B., Beer, J.M., and Togan, A M.: 1987, ‘Sources of atmospheric nitrous oxide from combustion’, J. Geophys. Res. 92, 3098–3104.Google Scholar
  58. Hao, W.M., Scharffe, D., and Crutzen, P.J.: 1988, ‘Production of N20, CH4 and CO2 from soils in the tropical savanna during the dry season’, J. Atmos Chem. 7, 93–105.Google Scholar
  59. Hao, W.M., Liu, M.H., and Crutzen, P.J.: 1990, Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on thte FAO statistics for the period 1975–1980, Goldhammer, J.G. (ed.), Fire in the Tropical Biota. Ecological Studies, Springer Verlag, Berlin, 84, 440–462Google Scholar
  60. Hauck, R.D.: 1984, Technological approaches to improving the efficiency of nitrogen fertilizer use by crop plants, Hauck, R.D. (ed.), Nitrogen in Crop Production, American Society of Agronomy, Madison, WI. pp. 551–560.Google Scholar
  61. Houghton, R.A., Boone, R.D., Fruci, J.R., Hobbie, J.E., Melillo, J.M., Palm, C.A., Peterson, B.J., Shaver, G.R., Woodwell, G.M., Moore, B., and Skole, D.L.: 1987, ‘The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux’, Tellus 39B, 122–139.Google Scholar
  62. Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.),: 1992, Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Intergovernmental Panel on Climate Change. Cambridge Univ. Press. 200pp.Google Scholar
  63. Hurst, D.F., Griffith, D.W.T., Carras, J.M., Williams, D.J., and Fraser, P.J.: 1994, ‘Measurement of trace gases emitted by Australian savanna fires during the 1990 dry season’, J. Atmos. Chem. 18, 33–56.Google Scholar
  64. Hutchinson, G.L., and Viets, F.G., Jr.: 1969, ‘Nitrogen enrichment of surface water by absorption of ammonia volatilized from cattle feedlots’, Science 166, 514–515.Google Scholar
  65. IPCC (Intergovernmental Panel on Climate Change): 1990, Greenhouse gases and aerosol, Watson, R.T., Rodhe, H., Oeschger, H., and Siegenthaler, U., J.T. Houghton (ed.), Climate change, the IPCC Scientific Assessment, pp. 1–40.Google Scholar
  66. IPCC (Intergovernmental Panel on Climate Change): 1992, Greenhouse gases: Sources and Sinks, Watson, R.T., L.G. Meira Filho, L.G., Sanhueza, E., and Janetos, A., Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.), Climate Change 1992, The Supplementary Reports to the IPCC Scientific Assessment, pp. 25–46Google Scholar
  67. Isermann, K.: 1993, Territorial, Continental and Global Aspects of C, N, P and S Emissions from Agricultural Ecosystems, NATO Advanced Research Workshop (ARW) on Interactions of C, N, P and S Biochemical Cycles. Springer-Verlag, Heidelberg, ASI Series. pp. 79–121.Google Scholar
  68. Isermann, K.: 1994, ‘Agriculture's share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share’, Environ. Pollution, Elsevier Science 83, 95–111.Google Scholar
  69. Jordan, C.: 1989, ‘The effect of fertiliser type and application rate on denitrification losses from cut grassland in Northern Ireland’, Fert. Res. 19, 45–55.Google Scholar
  70. Kaspar, H.F., and Tiedje, J.M.: 1981, ‘Dissimilatory reduction of nitrate and nitrite in the bovine rumen: Nitrous oxide production and effect of acctylene’, Appl. Environ. Microbiol. 3, 705–709.Google Scholar
  71. Keeney, D.R.: 1982, Nitrogen management for maximum efficiency and minimum pollution, Stevenson, F.J. (ed.), Nitrogen in Agricultural Soils, American Society of Agronomy, Madison, WI. pp. 605–649.Google Scholar
  72. Keerthisinghe, D.G., Freney, J.R., and Mosier, A.R.: 1993, ‘Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice’, Biol. Fertil. Soils. 16, 71–75.CrossRefGoogle Scholar
  73. Keller, M., Veldkamp, E., Weitz, A.M., and Reiners, W.A.: 1993, ‘Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica’, Nature 365, 244–246.CrossRefGoogle Scholar
  74. Khalil, M.A.K., and Rasmussen, R.A.: 1992, ‘The global sources of nitrous oxide’, J. Geophys. Res. 97, 14651–14660.Google Scholar
  75. Ko, M.K.W., Sze, N.D., and Weinstein, D.K.: 1991, ‘Use of satellite data to constrain the model-calculated atmospheric lifetime for N2O: implications for other trace gases’, J. Geophys. Res. 96, 7547–7552.Google Scholar
  76. Leyine, J.S.: 1988, ‘The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide’, Global Biogeochem. Cycles 2, 445–449.Google Scholar
  77. Lijinsky, W.: 1977, ‘How nitrosamines cause cancer’, New Scientist 27, 216–217.Google Scholar
  78. Lindau, C.W., Patrick Jr., W.H., and DeLaune, R.D.: 1993, Factors affecting methane production in flooded rice soils, Harper, L.A., Mosier, A.R., Duxbury, J.M., and Rolston, D.E. (eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Pub. No. 55. Am. Soc. Agron. Madison, WI. pp. 157–165.Google Scholar
  79. Linn, D.M., and Doran, J.W.: 1984, ‘Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils’, Soil Sci. Soc. Am. J. 48, 1267–1272.Google Scholar
  80. Lobert, J.M., Scharffe, D.H., Hao, W.M., Kuhlbush, T.A., Seuwen, R., Warneck, P., and Crutzen, P.J.: 1991, ‘Experimental evaluation of biomass burning emissions: nitrogen carbon containing compounds’, Global Biomass Burning, MIT Press. Cambridge. pp. 289–304.Google Scholar
  81. Luizao, F., Matson, P.A., Livingston, G., Luizao, R., and Vitousek, P.M.: 1989, ‘Nitrous oxide flux following tropical land clearing’, Global Biogeochem. Cycles 3, 281–285.Google Scholar
  82. Magalhaes, A.M.T., Chalk, P.M., and Strong, W.M., 1984, ‘Effect of nitrapyrin on nitrous oxide emission from fallow soils fertilized with anhydrous ammonia’, Fert. Res. 5, 411–421.Google Scholar
  83. Matson, P.A., and Vitousek, P.M.: 1990, ‘Ecosystem approach to a global nitrous oxide budget’, Bioscience 40, 667–672.Google Scholar
  84. McTaggart, Clayton, I. H., and Smith, K.: 1994, Nitrous oxide flux from fertilized grassland: strategies for reducing emissions, ean Ham, J. et al. (eds.), Non-CO2 Greenhouse Gases. Kluwer Academic Publishers, The Netherlands, pp. 421–426.Google Scholar
  85. Minami, K., and Ohsawa, A.: 1990, Emission of nitrous oxide dissolved in drainage water from agricultural land, Bouwman, A.F. (ed.), Soils and the Greenhouse Effect. John Wiley & Sons, New York. pp. 503–509.Google Scholar
  86. Minami, K., Shibuya, T., Ogawa, Y., and Fukushi, S.: 1990, ‘Effect of nitrification inhibitors on emission of nitrous oxide from soils’, Trans. 14th Int. Congress of Soil Sci. 2, 267–272.Google Scholar
  87. Mohanty, S.K., and Mosier, A.R.: 1990, ‘Nitrification-denitrification in flooded rice soils’, XIV International Congress of Soil Science IV, 326–331.Google Scholar
  88. Moraghan, J.T., Rego, T.J., Buresh, R.J., VIck, L.P G., Burford, J.R., Singh, S., and Sahrawat, K.L.: 1984, ‘Labeled nitrogen fertilizer research with urea in the semi-arid tropics’, Plant Soil 80, 21–33.Google Scholar
  89. Mosier, A.R., Stillwell, M., Parton, W.J., and Woodmansee, R.G.: 1981, ‘Nitrous oxide emissions from a native shortgrass prairie’, Soil Sci. Soc. Am. J. 45, 617–619.Google Scholar
  90. Mosier, A.R., and Parton, W.J.: 1985, Denitrification in a shortgrass prairie: A modeling approach, Caldwell, D.E., Brierly, J.A., and Brierly, C.L. (eds.), Planetary Ecology, Selected Papers from the Sixth International Symposium on Environmental Biogeochemistry, Van Nostrand Reinhold, New York. pp. 441–452.Google Scholar
  91. Mosier, A.R., Chapman, S.L., and Frency, J.R.: 1989, ‘Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilized with 15N-urea’, Fert. Res. 19, 127–136.Google Scholar
  92. Mosier, A.R. Schimel, D.S., Valentine, D.W., Bronson, K.F., and Parton, W.J.: 1991, ‘Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands’, Nature 350, 330–332.CrossRefGoogle Scholar
  93. Mosier, A.R.: 1993, Nitrous oxide emissions from agricultural soils, van Amstel, A.R. (ed.), Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control Proceedings, National Institue of Public Health and Environmental Protection, Bilthoven, The Netherlands pp. 273–285.Google Scholar
  94. Mosier, A.R., and Bouwman, A.F.: 1993, Working group report: Nitrous oxide emissions from agricultural soils, van Amstel, A.R. (ed.), Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control Proceedings, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands pp. 343–346.Google Scholar
  95. Mosier, A.R., Parton, W.J., Valentine, D.W., Ojima, D.S., Schimel, D.S., Delgado, J.A., and Kulmala, A.: 1996, ‘CH4 and N2O Fluxes in the Colorado shortgrass steppe: I. Impact of landscape and nitrogen addition’, Global Biogeochem. Cycles 10, 387–399.CrossRefGoogle Scholar
  96. Muirhead, W.A., Melhuish, F.M., and White, R.J.G.: 1985, ‘Comparison of several nitrogen fertlisers applied in surface irrigation systems. I. Crop response’, Fert. Res. 6, 97–109.Google Scholar
  97. Mulvaney, R.L., and Bremner, J.M.: 1981, Control of urea transformations in soils, Paul, A.E. and Ladd, J.N. (eds.), Soil Biochemistry, Marcel Dekker, New York. pp. 153–196.Google Scholar
  98. Muzio, L.J., and Kramlich, J.C.: 1988, ‘An artifact in the measurement of N2O from combustion sources’, Geophys. Res. Lett. 15, 1369–1372Google Scholar
  99. Myers, R.J.K.: 1988, Nitrogen management of upland crops: From cereals to food legumes to sugarcane, Wilson, J.R. (ed.), Advances in Nitrogen Cycling in Agricultural Ecosystems, C.A.B International, Wallingford. pp. 257–273.Google Scholar
  100. Nelson, K.E., Turgeon, A.J., and Street, J.R.: 1980, ‘Thatch influence on mobility and transformation of nitrogen carriers applied to turf’, Agron. J. 72, 487–492.Google Scholar
  101. O'Hara, G.W., and Daniel, R.M.: 1985, ‘Rhizobial denitrification: a review’, Soil Biol. Biochem. 17, 1–9. OECD/OCDE: 1991, ‘Estimation of Greenhouse Gas Emissions and Sinks’, Final report from the OECD Experts Meeting, 18–21 Feb., 1991, Prepared for Intergovernmental Panel on Climate Change, Revised August, 1991.CrossRefGoogle Scholar
  102. Oenema, O., Velthof, G.L., and Bussink, D.W.: 1992, Emissions of ammonia, nitrous oxide, and methane from cattle slurry, Oremland, R.S. (ed.), Biogeochemistry of Global Change. Chapman & Hall, New York. pp. 419–433Google Scholar
  103. Oertli, J.J.: 1980, ‘Controlled-release fertilizers’, Fert. Res. 1, 103–123.Google Scholar
  104. Parton, W.J., Mosier, A.R., and Schimel, D.S.: 1988, ‘Rates and pathways of nitrous oxide production in a shortgrass steppe’, Biogeochemistry 6, 45–48.CrossRefGoogle Scholar
  105. Peoples, M.B., Mosier, A.R., and Freney, J.R.: 1995, Minimizing gaseous loss of nitrogen, Bacon, P.E. (ed.), Nitrogen Fertilization in the Environment, Marcel Dekker Inc., New York. pp. 565–602.Google Scholar
  106. Poth, M., and Focht, D.D.: 1985, ‘15N kinetic analysis of N2O production by Nitrosamonas europae: an examination of nitrifier denitrification’, Applied Env. Microbiiol. 49, 1134–1141.Google Scholar
  107. Power, J.F.: 1991, ‘Growth characteristics of legume cover crops in a semiarid environment’, Soil Sci. Soc. Am. J. 55, 1659–1663.Google Scholar
  108. Rodhe, H.: 1990, ‘A comparison of the contribution of various gases to the greenhouse effect’, Science 248, 1217–1219, Washington, DC.Google Scholar
  109. Rolston, D.E., Sharpley, A.N., Toy, D.W., and Broadbent, F.E.: 1982, ‘Field measurement of denitrification. III: Rates during irrigation cycles’, Soil Sci. Soc. Am. J. 46, 289–296.Google Scholar
  110. Ronen, D., Magaritz, M., and Almon, E.: 1988, ‘Contaminated aquifers are a forgotten component in the global N2O budget’, Nature 335, 57–59.CrossRefGoogle Scholar
  111. Ryden, J.C.: 1981, ‘N2O exchange between a grassland soil and the atmosphere’, Nature 292, 235–237.Google Scholar
  112. Ryden, J.C.: 1983, ‘Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate’, J. Soil Sci. 1983, 355–365.Google Scholar
  113. Safley, L.M., Casada, M.E., Woodbury, J.W., and Roos, K.F.: 1992, ‘Global methane emissions from livestock and poultry manure’, USEPA report 400/1-91/048, Office of Air and Radiation, Washington, DC.Google Scholar
  114. Sanhueza, E., Hao, W.M., Scharffe, D., Donoso, L., and Crutzen, P.J.: 1990, ‘N2O and NO emissions from soils of the Northern part of the Guayana shield, Venezuela’, J. Geophys. Res. 95, 22481–22488.Google Scholar
  115. Sauerbeck, D.: 1994, Nitrogen fertilization and nitrogen balance-environmental consequences and limitations, Mohr, U. and Muentz, K. (eds.), The Terrestrial Nitrogen Cycle as Influenced by Man, Nova Acta Leopoldina (Halle) 70:441–447.Google Scholar
  116. Schimel, D.S., Parton, W.J., Adamsen, F.J., Woodmansee, R.G., Senft, R.L., and Stillwell, M.A.: 1986, ‘The role of cattle in the volatile loss of nitrogen from a shortgrass steppe’, Biogeochemistry 2, 39–52.Google Scholar
  117. Schlesinger, W.H., and Hartley, A.E.: 1992, ‘A global budget for atmospheric NH3’, Biogeochemistry 15, 191–211.CrossRefGoogle Scholar
  118. Seiler, W., and Conrad, R.: 1981, ‘Field measurements of natural and fertilizer induced N2O release rates from soils’, J. Air Pollution Control Assoc. 31, 767–772.Google Scholar
  119. Seiler, W., and Conrad, R.: 1987, Geophysiology of Amazonia, Vegetation and Climate Interactions, Dickinson, R.E. (ed.), John Wiley & Sons, Chichester, pp. 133–160.Google Scholar
  120. Shoji, S., and Gandeza, A.T. (eds.), 1992, Controlled Release Fertilizer with Polyolefin Resin Coating, Konnu Printing Co., Sendai, Japan. 92 pp.Google Scholar
  121. Sibbesen, E., and Lind, A.M.: 1993, ‘Loss of nitrous oxide from animal manure in dunghcaps’, Acta Agric. Scand. Section B. Soil and Plant 43, 16–20.Google Scholar
  122. Simpson, J.R., Freney, J.R., Wetselaar, R., Muirhead, W.A., Leuning, R., and Denmead, O.T.: 1984, ‘Transformations and losses of urea nitrogen after application to flooded rice’, Aust. J. Agric. Res. 35, 189–200.Google Scholar
  123. Smith, K.A.: 1990, ‘Greenhouse gas fluxes between land surfaces and the atmosphere’, Progress in Physical Geography 14, 349–372.Google Scholar
  124. Steffens, G., and Vetter, H.: 1990, ‘Neue Faustzahlen ueber Naehrstoffgehalte und Naehrstoffanfall’, Landwirtschaftsblatt Weser-Ems. Vol. 3. Google Scholar
  125. Steudler, P.A., Bowden, R.D., Melillo, J.M., and Aber, J.: 1989, ‘Influence of nitrogen fertilization on methane uptake in temperate forest soils’, Nature 341, 314–316.CrossRefGoogle Scholar
  126. Strong, W.M., Saffigna, P.G., Copper, J.E., and Cogle, A.L.: 1992. ‘Application of anhydrous ammonia or urea during the fallow period for winter cereals on the Darling Downs, Queensland. II. The recovery of 15N by wheat and sorghum in soil and plant at harvest’, Aust. J. Soil Res. 30, 711–721.Google Scholar
  127. Townley-Smith, L., Slinkard, A.E., Bailey, L.D., Biederbeck, V.O., and Rice, W.A.: 1993, ‘Productivity, water use and nitrogen fixation of annual-legume green-manure crops in the Dark Brown soil zone of Saskatchewan’, Can. J. Plant Sci. 73, 139–148.Google Scholar
  128. U.S. EPA.: 1990, Policy Options for Stabilizing Global Climate. Draft Report to Congress, Tirpak, D. and Lashof, D. (eds.), U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  129. U.S. EPA.: 1992, Anthropogenic methane emissions in the US: estimates for 1990, Report No. 430-R-93-003, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC.Google Scholar
  130. Van Der Hoek, K.W., and Couling, S.C.: 1996, ‘Manure Management, SNAP Code 100500’, Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook, First Edition, European Environment Agency, Copenhagen.Google Scholar
  131. Vetter, H., and Steffens, G.: 1989, Ableitung einer zweckmaessigen Dungeinheitengrenze und eines zweckmaessigen Dungeinheitenschluessels, Vetter, H., Klasink, A., and Steffens, G. (eds.), Mist und Guelleduengung nach Mass. VDLUFA-Schriftenreihe 19, 41–66.Google Scholar
  132. Williams, E.J., Hutchinson, G.L., and Fehsenfeld, F.C.: 1992, ‘NOx and N2O emissions from soil’, Global Biogeochem. Cycles 6, 351–388.Google Scholar
  133. World Development Report: 1992, Development and the Environment, Oxford Univ. Press, New York, NY 308 pp.Google Scholar
  134. Yagi, K., Minami, K., and Ogawa, Y.: 1990, ‘Effects of water percolation on methane emission from paddy fields’, NIAES. Res. Rep. Div. Environ. Planning 6, 105–112.Google Scholar
  135. Yagi, K., Kumagai, K., Tsuruta, H., and Minami, K.: 1994, Emission, production and oxidation of methane in a Japanese rice paddy field, Lal, R. Et al., (eds.), Soil Management and the Greenhouse Effect, Advances in Soil Sci., CRC Lewis Pub., Boca Raton, FL pp. 231–244.Google Scholar
  136. Yoshida T., and Alexander, M.: 1970, ‘Nitrous oxide formation by Nitrosomonas europea and heterotrophic microorganisms’, Soil Sci. Soc. Am. Proc. 34, 880–882.Google Scholar
  137. Youngdahl, L.J., Lupin, M.S., and Craswell, E.T.: 1986, ‘New developments in nitrogen fertilizers for rice’, Fert. Res. 9, 149–160.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A.R. Mosier
    • 1
  • J.M. Duxbury
    • 2
  • J.R. Freney
    • 3
  • O. Heinemeyer
    • 4
  • K. Minami
    • 5
  1. 1.USDA/ARSFort CollinsUSA
  2. 2.Cornell UniversityIthacaUSA
  3. 3.CSIROCanberraAustralia
  4. 4.BFALBraunschweigGermany
  5. 5.JIRCASTsukubaJapan

Personalised recommendations