Advertisement

Climatic Change

, Volume 38, Issue 3, pp 307–343 | Cite as

A Gcm Study of the Impact of Greenhouse Gas Increase on the Frequency of Occurrence of Tropical Cyclones

  • J.-F. Royer
  • F. Chauvin
  • B. Timbal
  • P. Araspin
  • D. Grimal
Article

Abstract

In order to make inferences on the possible future changes of tropical cyclogenesis frequency, we apply the diagnostic computation of the Yearly Genesis Parameter (YGP) proposed by Gray (1975) to the large-scale fields simulated by a GCM. The YGP is an empirical diagnostic of the frequency of Tropical Cyclones (TCs) based on six physical parameters computed from seasonal means of atmospheric and oceanic variables. In this paper, we apply the YGP diagnostic to the results of three climate simulations performed with the atmospheric General Circulation Model (GCM) of Météo-France: ARPEGE-Climat. In a control simulation of the current climate, it is shown that the model has a realistic tropical climatology and that the computed YGP reproduces the geographical distribution of the tropical cyclogenesis frequency. The YGP is then applied to two simulations corresponding to two scenarios of doubled carbon dioxide concentration. The two experiments differ by the sea surface temperatures (SSTs) used as a lower boundary condition. In both simulations the YGP gives a large increase of total cyclogenesis frequency, but without extension of the area of possible cyclone genesis. The increase in YGP is due essentially to the contribution of the ocean thermal energy factor in the thermodynamical potential. The dynamical parameters, on the contrary, limit the cyclogenesis increase and are a major explanation of the difference between the two experiments. This is in agreement with the results of the previous similar study of Ryan et al. (1992) concerning the importance of large-scale atmospheric circulation modifications on tropical cyclone climatology. After discussing the observed relationships between ocean surface temperature and large-scale convection, and questioning the use of a fixed temperature threshold in the diagnosis of tropical cyclone frequency, we propose a modification to the YGP consisting in replacing the thermodynamical potential by a term proportional to the convective precipitation computed by the GCM. For the simulation of the present climate this modification affects only marginally the geographical distribution of tropical cyclone genesis, but for the doubled CO2 case, the modified YGP diagnoses a more limited increase in TC genesis in the Northern Hemisphere and a small reduction in the Southern Hemisphere, which seems in better agreement with other recent modelling studies with high resolution climate models (Bengtsson et al., 1996). We conclude that the modified YGP based on convective precipitation could serve as a useful diagnostic of tropical cyclone genesis, and should be tested in simulations with other GCMs.

Keywords

Cyclone Tropical Cyclone General Circulation Model Thermodynamical Potential Atmospheric General Circulation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes, R. A.: 1982, ‘Tropical Cyclones: Their Evolution, Structure and Effects’, Meteorol. Monogr. 19(41), 208.Google Scholar
  2. Bengtsson, L., Böttger, H., and Kanamitsu, M.: 1982, ‘Simulation of HurricaneType Vortices in a General Circulation Model’, Tellus 34, 440-457.Google Scholar
  3. Bengtsson, L., Botzet, M., and Esch, M.: 1995, ‘Hurricane-Type Vortices in a General Circulation Model’, Tellus 47, 175-196.Google Scholar
  4. Bengtsson, L., Botzet, M., and Esch, M.: 1996, ‘Will Greenhouse Gas-Induced Warming over theNext 50 Years Lead to Higher Frequency and Greater Intensity of Hurricanes?’, Tellus 48A, 57-73.Google Scholar
  5. Bergeron, T.: 1954, ‘The Problem of Tropical Hurricanes’, Quart. J. Roy. Meteor. Soc. 80(344), 131-164.Google Scholar
  6. Bhat, G. S., Srinivasan, J., and Gadgil, S.: 1996, ‘Tropical Deep Convection, Convective Available Potential Energy and Sea Surface Temperature’, J. Meteor. Soc. Japan 74, 155-166.Google Scholar
  7. Bougeault, P.: 1985, ‘A Simple Parameterization of the Large-Scale Effects of Cumulus Convection’, Mon. Wea. Rev. 113, 2108-2121.Google Scholar
  8. Broccoli, A. J. and Manabe, S.: 1990, ‘Can Existing Climate Models be Used to Study Anthropogenic Changes in Tropical Cyclone Climate?’, Geophys. Res. Lett. 17, 1917-1920.Google Scholar
  9. Bruce, James P., Lee, Hoesung, and Haites, Erik F. (eds.): 1996, Climate Change 1995 - Economic and Social Dimensions of Climate Change, Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, p. 448.Google Scholar
  10. Cariolle, D., Amodei, M., Déqué, M., Mahfouf, J.-F., Simon, P., and Teyssèdre, H.: 1993, ‘A Quasi-Biennal Oscillation Signal in General Circulation Model Simulations’, Science 261, 1313-1316.Google Scholar
  11. Courtier, P. and Geleyn, J. F.: 1988, ‘A Global Numerical Weather Prediction Model with Variable Resolution: Application to Shallow-Water Equations’, Quart. J. Roy. Meteor. Soc. 114B(483), 1321-1346.Google Scholar
  12. Courtier, Ph., Freydier, C., Geleyn, J.-F., Rabier, F., and Rochas, M.: 1991, ‘The ARPEGE Project at Météo-France’, in Workshop on Numerical Methods in AtmosphericModels, Volume II, ECMWF, Reading, pp. 193-231.Google Scholar
  13. Cubasch, U., Hasselmann, K., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., and Sausen, R.: 1992, ‘Time-Dependent Greenhouse Warming Computations with a Coupled Ocean-Atmosphere Model’, Clim. Dyn. 8, 55-69.Google Scholar
  14. Déqué, M., Dreveton, C., Braun, A., and Cariolle, D.: 1994, ‘The ARPEGE/IFS Atmospheric Model: A Contribution to the French Community Climate Modelling’, Clim. Dyn. 10, 249-266.Google Scholar
  15. Emanuel, K. A.: 1986, ‘An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady State Maintenance’, J. Atmos. Sci. 43, 585-604.Google Scholar
  16. Emanuel, K. A.: 1987, ‘The Dependence of Hurricane Intensity on Climate’, Nature 326, 483-486.Google Scholar
  17. Emanuel, K. A.: 1988, ‘The Maximum Intensity of Hurricanes’, J. Atmos. Sci. 45, 1143-1155.Google Scholar
  18. Emanuel, K. A.: 1995, ‘Comments on “Global Climate Change and Tropical Cyclones”: Part I’, Bull. Amer. Meteorol. Soc. 76, 2241-2243.Google Scholar
  19. Evans, J. L.: 1992, ‘Comment on “Can Existing Climate Models Be Used to Study Anthropogenic Changes in Tropical Cyclone Climate”’, Geophys. Res. Lett. 19, 1523-5240.Google Scholar
  20. Gates, W. L.: 1992, ‘AMIP: The Atmospheric Model Intercomparison Project’, Bull. Amer. Meteorol. Soc. 73, 1962-1970.Google Scholar
  21. Geleyn, J.-F.:1987, ‘Use of a Modified Richarson Number for Parameterizing the Effect of Shallow Convection’, J. Meteor. Soc. Japan, Special NWP Symposium Volume, 141-149.Google Scholar
  22. Geleyn, J.-F., Bazile, E., Bougeault, P., Déqué, M., Ivanovici, V., Joly, A., Labbé, L., Piedelievre, J.-P., Piriou, J.-M., and Royer, J.-F.: 1995, ‘Atmospheric Parameterization Schemes in Meteo-France’s Arpege NWP Model’, in ECMWF Seminar on Parametrization of Sub-Grid Scale Physical Processes, 5-9 September 1994, ECMWF, Reading, pp. 385-402.Google Scholar
  23. Graham, N. E. and Barnett, T. P.: 1987, ‘Sea Surface Temperature, Surface Wind Divergence, and Convection over Tropical Oceans’, Science 238, 657-659.Google Scholar
  24. Gray, W. M.: 1968, ‘Global View on the Origin of Tropical Disturbances and Storms’, Mon. Wea. Rev. 96, 669-700.Google Scholar
  25. Gray, W.M.: 1975, Tropical Cyclone Genesis, Dept. of Atmospheric Science Paper, No. 234, Colorado State University, Fort Collins, CO, p. 121.Google Scholar
  26. Gray, W. M.: 1979, ‘Hurricanes: Their Formation, Structure and Likely Role in the Tropical Circulation’, in Shaw, D. B. (ed.), Meteorology over the Tropical Oceans, Royal Meteorological Society, J. Glaisher House, Grenville Place, Bracknell, Berks., pp. 155-218.Google Scholar
  27. Gray, W. M.: 1993, Seasonal Forecasting, WMO, TCP Rep. TCP31, pp. 5.1-5.21.Google Scholar
  28. Haarsma, R. J., Mitchell, J. F. B., and Senior, C. A.: 1993, ‘Tropical Disturbances in a GCM’, Clim. Dyn. 8, 247-257.Google Scholar
  29. Hall, N. M. J., Hoskins, B. J., Valdes, P. J., and Senior, C. A.: 1994, ‘Storm Tracks in a High-Resolution GCM with Doubled Carbon Dioxide’, Quart. J. Roy. Meteor. Soc. 120(519), 1209-1230.Google Scholar
  30. Hardiker, V.: 1997, ‘A Global Numerical Weather Prediction Model with Variable Resolution’, Mon. Wea. Rev. 125, 59-73.Google Scholar
  31. Houghton, J. T., Callander, B. A., and Varney, S. K.: 1992, Climate Change 1992, the Supplementary Report to the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change IPCC, Cambridge University Press, Cambridge, p. 216.Google Scholar
  32. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.: 1990, Climate Change, the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change IPCC, Cambridge University Press, Cambridge, p. 416.Google Scholar
  33. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995 - The Science of Climate Change, Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, p. 572.Google Scholar
  34. Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. M. L.: 1996, ‘Climate Models - Projections of Future Climate’, in Climate Change 1995 - The Science of Climate Change, Cambridge University Press, Cambridge, pp. 285-358.Google Scholar
  35. Krishnamurti, T. N., Bhowmik, S. K. R., Oosterhof, D., Rohaly, G., and Surgi, N.: 1995, ‘Mesoscale Signatures within the Tropics Generated by Physical Initialization’, Mon. Wea. Rev. 123, 2771- 2790.Google Scholar
  36. Krishnamurti, T. N., Oosterhof, D., and Dignon, N.: 1989, ‘Hurricane Prediction with a High Resolution Global Model’, Mon. Wea. Rev. 117, 631-669.Google Scholar
  37. Legates, D. R. and Willmott, C. J.: 1990b, ‘Mean Seasonal and SpatialVariability in Gauge-Corrected Global Precipitation’, Int. J. Clim. 10, 111-127.Google Scholar
  38. Levitus, S.: 1982, ‘Climatological Atlas of the World Ocean’, NOAA Prof. Paper, 13, NOAA, p. 174.Google Scholar
  39. Lighthill, J., Holland, G., Gray, W., Landsea, C., Craig, G., Evans, J., Kurihara, Y., and Guard, C.: 1994, ‘Global Climate Change and Tropical Cyclones’, Bull. Amer.Meteorol. Soc. 75, 2147-2157.Google Scholar
  40. Louis, J.-F., Tiedtke, M., and Geleyn, J.-F.: 1981, ‘A Short History of the Operational PBL Parameterization at ECMWF’, in Workshop on Planetary Boundary Layer Parameterization, 25-27 November 1981, ECMWF, Reading, pp. 59-80.Google Scholar
  41. Manabe, S., Holloway, J. L. Jr., and Stone, H. M.: 1970, ‘Tropical Circulation in a Time-Integration of a Global Model of the Atmosphere’, J. Atmos. Sci. 27, 580-613.Google Scholar
  42. Mayfield, M. and Lawrence, M.: 1996, ‘Atlantic Hurricanes’, Weatherwise 49, 34-41.Google Scholar
  43. McBride, J. L. and Zehr, R.: 1981, ‘Observational Analyses of Tropical Cyclone Formation. II. Comparison of Non-Developing versus Developing Systems’, J. Atmos. Sci. 38, 1132-1151.Google Scholar
  44. Murphy, J. M.: 1995, ‘Transient Response of the Hadley Centre Coupled Ocean Atmosphere Model to Increase in Carbon Dioxide. Part I: Control Climate and Flux Adjustement’, J. Clim. 8, 36-56.Google Scholar
  45. National Climatic Data Centre (ed.): 1994, Global Tropical and Extratropical Cyclone Climatic Data (GTECCA), (CDROM), Clim. Serv. Div., NOAA, Asheville, NC.Google Scholar
  46. Neumann, C. J.: 1993, ‘Global Overview’, in Holland, G. J. (ed.), Global Guide to Tropical Cyclone Forecasting, WMO Technical Document 560, Geneva, pp. 1.4-1.42.Google Scholar
  47. O'Brien, S. T., Hayden, B. P., and Shugart, H. H.: 1992, ‘Global Climatic Change, Hurricanes, and a Tropical Forest’, Clim. Change 22, 175-190.Google Scholar
  48. Palmén, E.: 1948, ‘On the Formation and Structure of Tropical Cyclones’, Geophysica 3, 26-38.Google Scholar
  49. Pearce, D. W., Cline, W. R., Achanta, A. N., Fankhauser, S., Pachauri, R. K., Tol, R. S. J., and Vellinga, P.: 1996, ‘The Social Costs of Climate Change: Greenhouse Damage and the Benefits of Control’, in Climate Change 1995 - Economic and Social Dimensions of Climate Change, Cambridge University Press, Cambridge, pp. 179-224.Google Scholar
  50. Randel,W. J.1992, ‘Global Atmospheric Circulation Statistics 10001 mb’, Technical Report, TN366+STR, NCAR, Atmospheric Chemistry Division, p. 256.Google Scholar
  51. Ryan, B. F., Watterson, I. G., and Evans, J. L.: 1992, ‘Tropical Cyclone Frequencies Inferred from Gray's Yearly Genesis Parameter: Validation of GCM Tropical Climate’, Geophys. Res. Lett. 19, 1831-1834.Google Scholar
  52. Ryan, C. J.: 1993, ‘Costs and Benefits of Tropical Cyclones, Severe Thunderstorms and Bushfires in Australia’, Clim. Change 25, 353-367.Google Scholar
  53. Schlesinger, M. E. and Mitchell, J. F. B.: 1987, ‘Climate Model Simulations of the Equilibrium Climatic Response to Increased Carbon Dioxyde’, Rev. Geophys. 25, 760-798.Google Scholar
  54. Stephenson, D. B. and Held, I. M.: 1993, ‘GCM Response of Northern Winter Stationary Waves and Storm Tracks to Increasing Amounts of Carbon Dioxide’, J. Clim. 6, 1859-1870.Google Scholar
  55. Timbal, B.: 1994, ‘Analyses d'expériences de modifications climatiques liées à l'augmentation desgaz àeffet de serre. Sensibilité de la réponse à la formulation du modèle et aux forÍages utilisés',Thèse d'Université, INP, Toulouse, p. 213.Google Scholar
  56. Timbal, B., Mahfouf, J.-F., Royer, J.-F., and Cariolle, D.: 1995, ‘Sensitivity to Prescribed Changes in Sea Surface Temperature and Sea Ice in Doubled Carbon Dioxide Experiments’, Clim. Dyn. 12, 1-20.Google Scholar
  57. Timbal, B., Mahfouf, J.-F., Royer, J.-F., Cubasch, U., and Murphy, J.M.: 1997, ‘Comparison between Doubled CO2 Time-Slice and Coupled Experiments’, J. Clim. 10, 1463-1469.Google Scholar
  58. Tsutsui, J. I. and Kasahara, A.: 1996, ‘Simulated Tropical Cyclones Using the National Center for Atmospheric Research Community Climate Model’, J. Geophys. Res. 101(D10), 15013-15032.Google Scholar
  59. Vitart, F., Anderson, J. L., and Stern, W. F.: 1997, ‘Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations’, J. Clim. 10, 745-760.Google Scholar
  60. Waliser, D. E. and Graham, N. E.: 1993, ‘Convective Cloud Systems and Warm-Pool Sea Surface Temperatures: Coupled Interactions and Self-Regulation’, J. Geophys. Res. 98, 12881-12894.Google Scholar
  61. Watterson, I. G., Evans, J. L., and Ryan, B. F.: 1995, ‘Seasonal and Interannual Variability of Tropical Cyclogenesis: Diagnostics from Large Scale Fields’, J. Clim. 8, 3052-3066.Google Scholar
  62. Wendland, W. M.: 1977, ‘Tropical Storm Frequencies Related to Sea Surface Temperatures’, J. Appl. Meteor. 16, 477-481.Google Scholar
  63. Wilson, N. C.: 1994, ‘Surge of Hurricanes and Floods Perturbs Insurance Industry’, J. Meteorol. U.K. 19(185), 3-9.Google Scholar
  64. Yanai, M.: 1964, ‘Formation of Tropical Cyclones’, Rev. Geophys. 2, 367-414.Google Scholar
  65. Zhang, C. D.: 1993, ‘Large-Scale Variability of Atmospheric Deep Convection in Relation to Sea Surface Temperature in the Tropics’, J. Clim. 6, 1898-1913.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J.-F. Royer
    • 1
  • F. Chauvin
    • 1
  • B. Timbal
    • 1
  • P. Araspin
    • 1
  • D. Grimal
    • 1
  1. 1.Météo-France/CNRMToulouse CedexFrance

Personalised recommendations