Climatic Change

, Volume 39, Issue 2–3, pp 381–393 | Cite as

Responses of Tropical Trees to Rainfall Seasonality and its Long-Term Changes

  • Rolf Borchert


Seasonality and physiognomy of tropical forests are mainly determined by the amount of annual rainfall and its seasonal distribution. Climatic change scenarios predict that global warming will result in reduced annual rainfall and longer dry seasons for some, but not all, tropical rainforests. Tropical trees can reduce the impact of seasonal drought by adaptive mechanisms such as leaf shedding or stem succulence and by utilization of soil water reserves, which enable the maintenance of an evergreen canopy during periods of low rainfall. Correlations between climate and responses of tropical trees are therefore poor and the responses of tropical rainforests to climatic changes are hard to predict. Predicted climate change is unlikely to affect the physiognomy of rainforests with high annual rainfall and low seasonality. Seasonal evergreen forests which depend on the use of soil water reserves will be replaced by more drought-tolerant semideciduous forests, once rainfall becomes insufficient to replenish soil water reserves regularly. As the limits of drought tolerance of tropical rainforests are not known, rate and extent of future changes cannot be predicted.


Global Warming Annual Rainfall Drought Tolerance Climatic Change Scenario Rainfall Seasonality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonell, M.: 1998, ‘Possible Impacts of Climate Variability and Change on Tropical Forest Hydrology’, Clim. Change, this volume.Google Scholar
  2. Borchert, R.: 1980, ‘Phenology and Ecophysiology of Tropical Trees: Erythrina poeppigiana’, Ecology 61, 1065-1074.Google Scholar
  3. Borchert, R.: 1991, ‘Growth Periodicity and Dormancy’, in Raghvendra, A. S. (ed.), Physiology of Trees, John Wiley, New York, pp. 221-245.Google Scholar
  4. Borchert, R.: 1994a, ‘Water Storage in Soil or Tree Stems Determines Phenology and Distribution of Tropical Dry Forest Trees’, Ecology 75, 1437-1449.Google Scholar
  5. Borchert, R.: 1994b, ‘Water Status and Development of Tropical Trees during Seasonal Drought’, Trees 8, 115-125.Google Scholar
  6. Borchert, R.: 1994c, ‘Induction of Rehydration and Bud Break by Irrigation or Rain in Deciduous Trees of a Tropical Dry Forest in Costa Rica’, Trees 8, 198-204.Google Scholar
  7. Borchert, R.: 1996, ‘Phenology and Flowering in Neotropical Dry Forest Species: Evidence from Herbarium Collections’, J. Tropic Ecol. 12, 65-80.Google Scholar
  8. Bush, M. B., Piperno, D. R., Colinvaux, P. A., de Oliveira, P. E., Krissek, L. A., Miller, M. C., and Rowe, W. E.: 1992, ‘A 14300-Yr Paleoecological Profile of a Lowland Tropical Lake in Panama’, Ecol. Monogr. 62, 251-275.Google Scholar
  9. Clark, D. A. and Clark, D. B.: 1994. ‘Climate Induced Annual Variation in Canopy Tree Growth in a Costa Rican Tropical Rain Forest’, J. Ecol. 82, 865-872.Google Scholar
  10. Condit, R., Hubbel, S. P., and Foster, R. B.: 1996, ‘Changes in a Tropical Forest with Shifting Climate: Results from a 50 Hectare Permanent Census Plot at Barro Colorado Island in Panama’, J. Tropic Ecol. 12, 231-256.Google Scholar
  11. Condit, R., Hubbel, S. P., and Foster, R. B.: 1997, ‘Mortality Rates of 205 Neotropical Tree and Shrub Species and the Impact of Severe Drought’, Ecology, in press.Google Scholar
  12. Condit, R.: 1998, ‘Ecological Implications of Changes in Drought Patterns: Shifts in Forest Composition in Panama’, Clim. Change 39(this volume).Google Scholar
  13. Corlett, R. T. and LaFrankie Jr., J. V.: 1998, ‘Potential Impacts of Climate Change on Tropical Asian Forests Through an Influence on Phenology’, Clim. Change 39(this volume).Google Scholar
  14. Devall, M. S., Parresol, B. R., and Wright, S. J.: 1995, ‘Dendroecological Analysis of Cordia alliodora, Pseudobombax septenatumand Annona Spragueiin Central Panama’, IAWA J. 16, 411-424.Google Scholar
  15. Diaz, H. F. and Markgraf, V. (eds.): 1992, El Niño. Historical and Paleoclimatic Aspects of the Southern Oscillation, Cambridge University Press, Cambridge.Google Scholar
  16. Flenley, J. R.: 1998, ‘Tropical Forests under the Climates of the Last 30,000 Years’, Clim. Change 39(this volume).Google Scholar
  17. Frankie, G. W., Baker, H. G., and Opler, P. A.: 1974, ‘Comparative Phenological Studies of Trees in Tropical Wet and Dry Forests in the Lowlands of Costa Rica’, J. Ecol. 62, 881-919.Google Scholar
  18. Hagnauer, W.: 1993, El Sistema Agroecol ógico de Guanacaste: Oportunidades y Desáfios para la Agricultura y el Turismo, Fundación para el desarrollo sostenido, Cañas, Costa Rica.Google Scholar
  19. Hartshorn, G. S.: 1992, ‘Possible Effects of Global Warming on the Biological Diversity in Tropical Forests’, in Peters, R. L. and Lovejoy, T. E. (eds.), Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 137-146.Google Scholar
  20. Hulme, M. and Viner, D.: 1998, ‘A Climate Change Scenario for the Tropics’, Clim. Change 39(this volume).Google Scholar
  21. Houston, M. A.: 1994, Biological Diversity. The Coexistence of Species in Changing Landscapes, Cambridge University Press, Cambridge.Google Scholar
  22. Jackson, P. C., Cavelier, J., Goldstein, G., Meinzer, F. C., and Holbrook, N. M.: 1995, ‘Partitioning of Water Resources among Plants of a Lowland Tropical Forest’, Oecologia 101, 197-203.Google Scholar
  23. Leigh, E. G., Windsor, D. M., Rand, A. S., and Foster, R. B.: 1990, ‘The Impact of the “El Niño” Drought on a Panamanian Semideciduous Forest’, in Glynn, P. W. (ed.), Global Ecological Consequences of the 1982-83 El Ni ñoSouthern Oscillation, Elsevier, Amsterdam, pp. 473-486.Google Scholar
  24. Leighton, M. and Wirawan, N.: 1986, ‘Catastrophic Drought and Fire in Borneo Tropical Rainforest Associated with the 1982-1983 El Niño Southern Oscillation Event’, in Prance, G. T. (ed.), Tropical Forests and the World Atmosphere, AAAS Selected Symposium 101, pp. 75-101.Google Scholar
  25. Markham, A., Dudley, N., and Stolton, S.: 1994, Some Like it Hot. Climatic Change, Biodiversity and the Survival of Species, WWF International, Gland.Google Scholar
  26. Mori, S. A., Lisboa, G., and Kallunki, J.: 1982, ‘Fenologia de uma Mata Higrofila Sulbaiana’, Rev. Theobroma 12, 217-230.Google Scholar
  27. Mori, S. A.: 1987, ‘The Lecythidaceae of a Lowland Neotropical Forest: La Fumée Mountain, French Guiana’, Mem. N. Y. Bot. Garden 44, 1-190.Google Scholar
  28. Nepstad, D. C., Carvalho, C. R. de, Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., Trumbore, S. E., and Vieira, S: 1994, ‘The Role of Deep Roots in the Hydrological and Carbon Cycles of Amazonian Forests and Pastures’, Nature 372, 666-669.Google Scholar
  29. Nepstad, D. C., Jipp, P, Moutinho, P., Negreiros, G., and Vieira, S.: 1995. ‘Forest Recovery Following Pasture Abandonment in Amazonia: Canopy Seasonality, Fire Resistance and Ants’, in Rapport, D. J., Gaudet, C. L., and Calow, P. (eds.), Evaluating and Monitoring the Health of Large-Scale Ecosystems(Nato ASI Series Vol. 128), Springer Verlag, Berlin, pp. 333-349.Google Scholar
  30. Prance, G. T.: 1990, ‘The Floristic Composition of the Forests of Central Amazonian Brazil’, in Gentry, A. H. (ed.), Four Neotropical Rainforests, Yale University Press, New Haven, pp. 112-140.Google Scholar
  31. Puri, G. S.: 1969, Indian Forest Ecology, Oxford Book and Stationary Co., New Delhi.Google Scholar
  32. Rawitscher, F.: 1948, ‘The Water Economy of the Vegetation of the Campos Cerrados in Southern Brazil’, J. Ecol. 36, 237-268.Google Scholar
  33. Sabatier, D. and Puig, H.: 1986, ‘Phénologie et Saisonnalité de la Floraison et de la Fructification en Forêt Dense Guyanaise’, Mem. Mus. Hist. Nat. Ser. A 132, 173-184.Google Scholar
  34. Seth, S. K., Khan, M. A. W., and Yadav, J. S. P.: 1960, ‘Sal Mortality in Bihar’, Indian Forester 86, 645-679.Google Scholar
  35. Shuttleworth, W. J.: 1988, ‘Evaporation from Amazonian Rain Forest’, Proc. Roy. Soc. Lond. B 233, 321-346.Google Scholar
  36. Tang, H. T. and Chong, P. F.: 1979, ‘Sudden Mortality in a Regenerated Stand of Shorea curtisiiin Senaling Inas Forest Reserve, Negeri Sembilan’, Malaysian Forester 42, 240-248.Google Scholar
  37. Troup, R. S.: 1921, The Silviculture of Indian Trees, Clarendon Press, Oxford.Google Scholar
  38. Van der Hammen, T.: 1991, ‘Paleoecological Background: Neotropics’, Clim. Change 19, 37-47.Google Scholar
  39. Webb III, T.: 1992, ‘Past Changes in Vegetation and Climate: Lessons for the Future’, in Peters, R. L. and Lovejoy, T. E. (eds.), Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 59-75.Google Scholar
  40. Williams, R. J., Cook, G. D., Braithwaite, R. W., Andersen, A N., and Corbett, L. K.: 1995, ‘Australia’s Wet Dry Tropics: Identifying the Sensitive Zones’, in Pernetta, J., Leemans, R., Elder, D., and Humphrey, S. (eds.), The Impact of Climate Change on Ecosystems and Species: Terrestrial Ecosystems, IUCN, Gland, Switzerland, pp. 39-65.Google Scholar
  41. Windsor, D. M.: 1990, ‘Climate and Moisture Availability in a Tropical Forest: Long-Term Records from Barro Colorado Island, Panama’, Smithsonian Contrib. Earth Sci 29, 1-83.Google Scholar
  42. Woodward, F. I.: 1987, Climate and Plant Distribution, Cambridge University Press, Cambridge.Google Scholar
  43. Woodward, F. I.: 1992, ‘A Review of the Effects of Climate on Vegetation: Ranges, Competition and Composition’, in Peters, R. L. and Lovejoy, T. E. (eds.), Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 105-123.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Rolf Borchert
    • 1
  1. 1.Department of Biochemistry, Cell and Molecular BiologyUniversity of KansasLawrenceU.S.A

Personalised recommendations