Climatic Change

, Volume 36, Issue 3–4, pp 233–251 | Cite as


  • H. F. DIAZ


This paper provides an overview of climatic changes that have been observed during the past century at certain high-elevation sites, and changes in a more distant past documented by a variety of climate-sensitive environmental indicators, such as tree-rings and alpine glaciers, that serve as a measure of the natural variability of climate in mountains over longer time scales. Detailed studies such as those found in this special issue of Climatic Change , as well as those noted in this review, for the mountain regions of the world, advance our understanding in a variety of ways. They are not only helpful to characterize present and past climatological features in the mountainous zones, but they also provide useful information to the climate modeling community. Because of the expected refinements in the physical parameterizations of climate models in coming years, and the probable increase in the spatial resolution of GCMs, the use of appropriate data from high elevation sites will become of increasing importance for model initialization, verification, and intercomparison purposes. The necessity of accurate projections of climate change is paramount to assessing the likely impacts of climate change on mountain biodiversity, hydrology and cryosphere, and on the numerous economic activities which take place in these regions.


Climatic Change Economic Activity Physical Parameterization Mountain Region Model Initialization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angell, J. K.: 1988, ‘Variations and Trends in Tropospheric and Stratospheric Global Temperatures, 1958–87’, J. Clim. 1, 1296–1313.Google Scholar
  2. Auer, I. and Boehm, R.: 1994, ‘Combined Temperature-Precipitation Variations in Austria during the Instrumental Record’, Theor. Appl. Clim. 49, 161–174.Google Scholar
  3. Barry, R. G.: 1994, ‘Past and Potential Future Changes in Mountain Environments’, in Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge Publishing Company, London and New York, pp. 3–33.Google Scholar
  4. Baumgartner, T. R., Michaelsen, J., Thompson, L. G., Shen, G. T., Soutar, A., and Casey, R. E.: 1989, ‘The Recording of Inter-Annual Climatic Change by High Resolution Natural Systems: Tree-Rings, Coral Bands, Glacial Ice Layers and Marine Varves’, in Peterson, D. (ed.), Climatic Change in the Eastern Pacific and Western Americas, American Geophysical Union, Washington, D.C., pp. 1–14.Google Scholar
  5. Beniston, M. (ed.): 1994, Mountain Environments in Changing Climates, Routledge Publishing Co., London and New York, p. 492.Google Scholar
  6. Beniston, M., Fox, D. G., Adhikary, S., Andressen, R., Guisan, A., Holten, J., Innes, J., Maitima, J., Price, M., and Tessier, L.: 1996, The Impacts of Climate Change on Mountain Regions, Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Chapter 5, Cambridge University Press, Cambridge, pp. 191–213.Google Scholar
  7. Beniston, M. and Rebetez, M.: 1996, ‘Regional Behavior of Minimum Temperatures in Switzerland for the Period 1979–1993’, Theor. Appl. Clim. 53, 231–243.Google Scholar
  8. Beniston, M. and Rebetez, M.: 1997, ‘Shifts in Extremes in Relation to Changes in Mean Climate. Investigations of Observed and Simulated Climatological Data in the Swiss Alpine Region’, J. Clim., submitted.Google Scholar
  9. Beniston, M., Ohmura, A., Rotach, M., Tschuck, P., Wild, M., and Marinucci, M. R.: 1995, Simulation of Climate Trends over the Alpine Region: Development of a Physically-Based Modeling System for Application to Regional Studies of Current and Future Climate, Final Scientific Report Nr. 4031-33250 to the Swiss Nat ional Science Foundation, Bern, Switzerland.Google Scholar
  10. Beniston, M., Ohmura, A., Wild, M., Tschuck, P., and Rotach, M.: 1996, Feedbacks between Mountains and Climate, Final Scientific Report Nr. 5001-035179 to the Swiss National Science Foundation, Bern, Switzerland.Google Scholar
  11. Beniston, M., Rebetez, M., Giorgi, F., and Marinucci, M. R.: 1994, ‘An Analysis of Regional Climate Change in Switzerland’, Theor. Appl. Clim. 49, 135–159.Google Scholar
  12. Bolin, B.: 1950, ‘On the Influence of the Earth's Orography on the General Character of the Westerlies’, Tellus 2, 184–195.Google Scholar
  13. Broccoli, A. J. and Manabe, S.: 1992, ‘The Effect of Orography on Midlatitude Northern Hemisphere Dry Climates’, J. Clim. 5, 1181–1201.Google Scholar
  14. Brown, T. B., Barry, R. G., and Doesken, N. J.: 1992, An Exploratory Study of Temperature Trends for Colorado Paired Mountain-High Plains Stations, Preprints, Amer. Met. Soc. Sixth Conference on Mountain Meteorology, Portland, OR, September 29–October 2, 1992, pp. 181–184.Google Scholar
  15. Burga, C. A.: 1993, ‘Pollen Analytical Evidence of Holocene Climate Fluctuations in the European Central Alps’, in Frenzel, B. (ed.), Oscillations of the Alpine and Polar Tree Limits in the Holocene, Gustav Fischer Verlag, Stuttgart, pp. 163–174.Google Scholar
  16. CLIMAP Project Members: 1981, Seasonal Reconstructions of the Earth's Surface at the Last Glacial Maximum, Geological Society of America, Map Chart Series, MC-36.Google Scholar
  17. Dessens, J. and Bücher, A.: 1995, ‘Changes in Minimum and Maximum Temperatures at the Pic du Midi in Relation with Humidity and Cloudiness, 1882–1984’, Atmos. Res. 37, 147–162.Google Scholar
  18. Diaz, H. F. and Graham, N. E.: 1996, ‘Recent Changes in Tropical Freezing Heights and the Role of Sea-Surface Temperature’, Nature 383, 152–155.Google Scholar
  19. Diaz, H. F. and Bradley, R. S.: 1997, ‘Temperature Variations during the Last Century at High Elevation Sites’, Clim. Change (this issue).Google Scholar
  20. Geiger, R.: 1965, The Climate Near the Ground, Harvard University Press, Cambridge, MA, p. 277.Google Scholar
  21. Giorgi, F. and Mearns, L. O.: 1991, ‘Approaches to the Simulation of Regional Climate Change’, Rev. Geophys. 29, 191–216.Google Scholar
  22. Giorgi, F., Hurrell, J., Marinucci, M., and Beniston, M.: 1996, ‘Height Dependency of the North Atlantic Oscillation Index. Observational and Model Studies’, J. Clim., accepted.Google Scholar
  23. Graybill, D. A. and Shiyatov, S. G.: 1992, ‘Dendroclimatic Evidence from the Northern Soviet Union’, in Bradley, R. S. and Jones, P. D. (eds.), Climate Since A.D. 1500, Routledge, London, pp. 393–414.Google Scholar
  24. Grove, J. M.: 1986, The Little Ice Age, Methuen, London, p. 498.Google Scholar
  25. Hastenrath, S. and Kruss, P. D.: 1992, ‘The Dramatic Retreat of Mount Kenya's Glaciers 1963–87: Greenhouse Forcing’, Ann. Glaciol. 16, 127–133.Google Scholar
  26. Held, I. M.: 1983, ‘Stationary and Quasi-Stationary Eddies in the Extratropical Atmosphere: Theory’, in Hoskins, B. and Pearce, R. B. (eds.), Large-Scale Dynamical Processes in the Atmosphere, Academic Press, New York, pp. 127–168.Google Scholar
  27. Hurrell, J. W.: 1995, ‘Decadal Trends in the North Atlantic Oscillation Regional Temperatures and Precipitation’, Science 269, 676–679.Google Scholar
  28. Hurrell, J. W. and van Loon, H.: 1997, ‘Decadal Variations in Climate Associated with the North Atlantic Oscillation. Climatic Change’, Clim. Change (this issue).Google Scholar
  29. IPCC: 1996, Watson, R. T., Zinyowera, M., and Moss, R. H. (eds.), Climate Change 1995, The IPCC Second Assessment Report, Cambridge University Press, Cambridge and New York, p. 862.Google Scholar
  30. Jacqmin, D. and Lindzen, R. S.: 1985, ‘The Causation and Sensitivity of the Northern Winter Planetary Waves’, J. Atmos. Sci. 42, 724–745.Google Scholar
  31. Jones, P. D. and Wigley, T. M. L.: 1990, ‘Global Warming Trends’, Sci. Amer. 263, 84–91.Google Scholar
  32. Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K. P., Lindseay, J., Charlson, R. J., and Peterson, T. C.: 1993, ‘Asymmetric Trends of Daily Maximum and Minimum Temperature’, Bull. Amer. Meteorol. Soc. 74, 1007–1023.Google Scholar
  33. Karlén, W.: 1976, ‘Lacustrine Sediments and Tree-Limit Variations as Indicators of Holocene Climatic Fluctuations in Lappland, Northern Sweden’, Geografiska Annaler 58A, 1–34.Google Scholar
  34. Karlén, W.: 1981, ‘Lacustrine Sediment Studies’, Geografiska Annaler 63A, 273–281.Google Scholar
  35. Karlén, W.: 1993, ‘Glaciological, Sedimentological and Palaeobotanical Data Indicating Holocene Climatic Change in Northern Fennoscandia’, in Frenzel, B., Eronen, M., Vorren, K-D., and Gläser, B. (eds.), Oscillations of the Alpine and Polar Tree Limits in the Holocene, Gustav Fischer Verlag, Stuttgart, pp. 69–83.Google Scholar
  36. Katz, R. W. and Brown, B. G.: 1992, ‘Extreme Events in a Changing Climate: Variability is More Important than Averages’, Clim. Change 21, 289–302.Google Scholar
  37. Keigwin, L. D.: 1996, ‘The Little Ice Age and Medieval Warm Period in the Sargasso Sea’, Science 274, 1504–1508.Google Scholar
  38. Klötzli, F.: 1984, Neuere Erkenntnisse zur Buchengrenze in Mitteleuropa, Fukarek, Akad. Nauka um jetn. bosne Herc., rad. 72, Odj. Prir. Mat. Nauka 21, P. Festschr. (ed.), Sarajevo, pp. 381–395.Google Scholar
  39. Klötzli, F.: 1991, ‘Altitudinal Controls on Alpine Vegetation’, in Esser, G. and Overdiek, D. (eds.), Longevity and Stress, Modern Ecology: Basic and Applied Aspects, Elsevier, Amsterdam, pp. 97–110.Google Scholar
  40. Klötzli, F.: 1994, ‘Vegetation als Spielball naturgegebener Bauherren’, Phytocoenologia 24, 667–675.Google Scholar
  41. Kullman, L.: 1989, ‘Tree-Limit History during the Holocene in the Scandes Mountains, Sweden, Inferred from Subfossil Wood’, Rev. Palaeobot. Palynol. 58, 163–171.Google Scholar
  42. Kullman, L.: 1993, ‘Dynamism of the Altitudinal Margin of the Boreal Forest in Sweden’, in Frenzel, B., Eronen, M., Vorren, K-D., and Gläser, B. (eds.), Oscillations of the Alpine and Polar Tree Limits in the Holocene, Gustav Fischer Verlag, Stuttgart, pp. 41–55.Google Scholar
  43. Kutzbach, J. E.: 1967, ‘Empirical Eigenvectors of Sea-Level Pressure, Surface Temperature and Precipitation Complexes over North America’, J. Appl. Met. 133, 791–802.Google Scholar
  44. Kvamme, M.: 1993, ‘Holocene Forest Limit Fluctuations and Glacier Development in the Mountains of Southern Norway, and Their Relevance to Climate History’, in Frenzel, B., Eronen, M., Vorren, K-D., and Gläser, B. (eds.), Oscillations of the Alpine and Polar Tree Limits in the Holocene, Gustav Fischer Verlag, Stuttgart, pp. 99–113.Google Scholar
  45. Leonard, E.: 1986, ‘Use of Lacustrine Sedimentary Sequences as Indicators of Holocene Glacier History’, Banff National Park, Alberta, Canada, Quatern. Res. 26, 218–231.Google Scholar
  46. Magny, M.: 1995, ‘Successive Oceanic and Solar Forcing Indicated by Younger Dryas and Early Holocene Climatic Oscillations in the Jura’, Quatern. Res. 43, 279–285.Google Scholar
  47. Manabe, S. and Terpstra, T. B.: 1974, ‘The Effects of Mountains on the General Circulation of the Atmosphere as Identified by Numerical Experiments’, J. Atmos. Sci. 31, 3–42.Google Scholar
  48. Marinucci, M. R., Giorgi, F., Beniston, M., Wild, M., Tschuck, P., and Bernasconi, A.: 1995, ‘High Resolution Simulations of January and July Climate over the Western Alpine Region with a Nested Regional Modeling System, Theor. Appl. Clim. 51, 119–138.Google Scholar
  49. Matthews, J.: 1991, ‘The Late Neoglacial (“Little Ice Age”) Glacier Maximum in Southern Norway: New 14C Dating Evidence and Climatic Implications’, The Holocene 1, 219–233.Google Scholar
  50. Matthews, J.: 1993, ‘Deposits Indicative of Holocene Climatic Fluctuations in the Timberline Areas of Northern Europe: Some Physical Proxy Data Sources and Research Approaches’, in Frenzel, B., Eronen, M., Vorren, K-D., and Gläser, B. (eds.), Oscillations of the Alpine and Polar Tree Limits in the Holocene, Gustav Fischer Verlag, Stuttgart, pp. 85–97.Google Scholar
  51. Michaelson, J. and Thompson, L. G.: 1992, ‘A Comparison of Proxy Records of El Niño/Southern Oscillation’, in Diaz, H. F. and Markgraf, V. (eds.), El Niño, Historical and Paleoecological Aspects of the Southern Oscillation, Cambridge University Press, Cambridge, pp. 323–348.Google Scholar
  52. Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E., and Oberhuber, J. M.: 1994, ‘Interdecadal Variability of the Pacific Ocean: Model Response to Observed Heat Flux and Wind Stress Anomalies’, Clim. Dyn. 9, 287–301.Google Scholar
  53. Morrissey, M. L. and Graham, N. E.: 1996, ‘Recent Trends in Rain Gauge Precipitation Measurements from the Tropical Pacific: Evidence for an Enhanced Hydrologic Cycle’, Bull. Amer. Met. Soc. 77, 1207–1219.Google Scholar
  54. Nesje, A. and Johannessen, T.: 1992, ‘What Were the Primary Forcing Mechanisms of High-Frequency Holocene Climate and Glacier Variations?’ The Holocene 2, 79–84.Google Scholar
  55. Nesje, A., Kvamme, M., Rye, N., and Løvlie, R.: 1991, ‘Holocene Glacier and Climate History of the Jostedalsbreen Region, Western Norway: Evidence from Lake Sediments and Terrestrial Deposits’, Quatern. Sci. Rev. 10, 87–114.Google Scholar
  56. Nesje, A., Dahl, S. O., Løvlie, R., and Sulebak, J. R.: 1994, ‘Holocene Glacier Activity at the Southwestern Part of Hardangerjøkulen, Central-South Norway: Evidence from Lacustrine Sediments’, The Holocene 4, 377–382.Google Scholar
  57. Nigam, S., Held, I. M., and Lyons, S. W.: 1988, ‘Linear Simulations of the Stationary Eddies in a GCM. Part II: The Mountain Model’, J. Atmos. Sci. 45, 1433–1452.Google Scholar
  58. Oerlemans, J.: 1994, ‘Quantifying Global Warming from the Retreat of Glaciers’, Science 264, 243–245.Google Scholar
  59. Oort, A. H. and Liu, H.: 1993, ‘Upper-Air Temperature Trends over the Globe, 1958–1989’, J. Clim. 6, 292–307.Google Scholar
  60. Ozenda, P.: 1985, La Végétation de la Chaine Alpine dans l'Espace Montagnard Européen, Masson, Paris, p. 344.Google Scholar
  61. Porter S. C.: 1986, ‘Pattern and Forcing of Northern Hemisphere Glacier Variations during the Last Millennium, Quatern. Res. 26, 27–48.Google Scholar
  62. Quezel, P. and Barbero, M.: 1990, ‘Les forêts méditerranéennes: problèmes posés par leur signification historique, écologique et leur conservation’, Acta Botanica Malacitana 15, 145–178.Google Scholar
  63. Rameau, J. C., Mansion, D., Dumé, G., Lecointe, A., Timbal, J., Dupont, P., and Keller, R.: 1993, Flore Forestière Française, Guide Ecologique Illustré, Lavoisier TEC and DOC Diffusion, Paris, p. 2419.Google Scholar
  64. Rind, D. and Overpeck, J.: 1993, ‘Hypothesized Causes of Decadal-to-Century Climate Variability: Climate Model Results’, Quatern. Sci. Rev. 12, 357–374.Google Scholar
  65. Rochefort, R. R., Little, R. L., Woodward, A., and Peterson, D. L.: 1994, ‘Changes in Sub-Alpine Tree Distribution in Western North America: A Review of Climatic and Other Causal Factors’, The Holocene 4, 89–100.Google Scholar
  66. Schaer, C., Frei, C., Lüthi, C., and Davies, H. C.: 1996, ‘Surrogate Climate Change Scenarios for Regional Climate Models’, Geophys. Res. Lett. 23, 669–672.Google Scholar
  67. Schubert, C.: 1992, ‘The Glaciers of the Sierra Nevada de Mérida (Venezuela): A Photographic Comparison of Recent Deglaciation’, Erdkunde 46, 58–64.Google Scholar
  68. Smith, R. B.: 1979, ‘The Influence of Mountains on the Atmosphere’, in Advances in Geophysics, Volume 21, Academic Press, New York, pp. 87–230.Google Scholar
  69. Thompson, L. G.: 1991, ‘Ice Core Records with Emphasis on the Global Record of the Last 2000 Years, in Bradley, R. S. (ed.), Global Changes of the Past, University Corporation for Atmospheric Research, Boulder, pp. 201–224.Google Scholar
  70. Thompson, L. G.: 1992, ‘Ice Core Evidence from Peru and China’, in Bradley, R. S. and Jones, P. D. (eds.), Climate Since A.D. 1500, Routledge, London, pp. 517–548.Google Scholar
  71. Thompson, L. G., Mosley-Thompson, E., and Arnao, B. M.: 1984, ‘Major El Niño/Southern Oscillation Events Recorded in Stratigraphy of the Tropical Quelccaya Ice Cap’, Science 226, 50–52.Google Scholar
  72. Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., and Koci, B. R.: 1985, ‘A 1500 Year Record of Tropical Precipitation in Ice Cores from the Quelccaya Ice Cap, Peru’, Science 229, 971–973.Google Scholar
  73. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Bolzan, J. F., Dai, J., Gundestrup, N., Yao, T., Wu, X., Klein, L., and Xie, Z.: 1990, ‘Glacial Stage Ice Core Records from the Sub-Tropical Dunde Ice Cap, China’, Ann. Glaciol. 14, 288–298.Google Scholar
  74. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Bolzan, J. F., Dai, J., Yao, T., Gundestrup, N., Wu, X., Klein, L., and Xie, Z.: 1989, ‘Holocene-Late Pleistocene Climatic Ice Core Records from Qinghai-Tibetan Plateau’, Science 246, 474–477.Google Scholar
  75. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, N., Yao, T., Dyurgerov, M., and Dai, J.: 1993, ‘“Recent Warming”: Ice Core Evidence from Tropical Ice Cores, with Emphasis on Central Asia’, Global Planet. Change 7, 145–156.Google Scholar
  76. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P-N., Henderson, K. A., Dai, J., Bolzan, J. F., and Liu, K-B.: 1995, ‘Late Glacial Stage and Holocene Tropical Ice Core Records from Huascarán, Peru’, Science 269, 46–50.Google Scholar
  77. Thompson, L. G., Mosley-Thompson, E., Dansgaard, W., and Grootes, P. M.: 1986, ‘The Little Ice Age as Recorded in the Stratigraphy of the Tropical Quelccaya Ice Cap’, Science 234, 361–364.Google Scholar
  78. Thompson, L. G., Mosley-Thompson, E., Wu, X., and Xie, Z.: 1988a, ‘Wisconsin/Würm Glacial Stage Ice in the Sub-Tropical Dunde Ice Cap, China’, Geojournal 17.4, 517–523.Google Scholar
  79. Thompson, L. G., Davis, M., Mosley-Thompson, E., and Liu, K.: 1988b, ‘Pre-Incan Agricultural Activity Recorded in Dust Layers in Two Tropical Ice Cores’, Nature 336, 763–765.Google Scholar
  80. Thompson, L. G., Mosley-Thompson, E., Davis, M., Lin, P. N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.-B.: 1995, ‘Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru’, Science 269, 46–50.Google Scholar
  81. Thompson, L. G. and Mosley-Thompson, E.: 1987, ‘Evidence of Abrupt Climatic Change during the Last 1500 Years Recorded in Ice Cores from the Tropical Quelccaya Ice Cap, Peru’, in Berger, W. H. and Labeyrie, L. D. (eds.), Abrupt Climatic Change, Reidel, Dordrecht, pp. 99–110.Google Scholar
  82. Tranquillini, W.: 1993, ‘Climate and Physiology of Trees in the Alpine Timberline Regions’, in Frenzel, B., Eronen, M., Vorren, K-D., and Gläser, B. (eds.), Oscillations of the Alpine and Polar Tree Limits in the Holocene, Gustav Fischer Verlag, Stuttgart, pp. 127–135.Google Scholar
  83. Trenberth, K. E. and Hoar, T. J.: 1995, ‘The 1990–1995 El Nino-Southern Oscillation Event: Longest on Record’, Geophys. Res. Lett. 23, 57–60.Google Scholar
  84. Trenberth, K. E. and Hurrell, J. W.: 1994, ‘Decadal Atmosphere-Ocean Variations in the Pacific’, Clim. Dyn. 9, 303–319.Google Scholar
  85. Trenberth, K. E.: 1990, ‘Recent Observed Interdecadal Climate Changes in the Northern Hemisphere’, Bull. Amer. Meteorol. Soc. 71, 988–993.Google Scholar
  86. Vinnikov, K. Ya., Robock, A., Stouffer, R. A., and Manabe, S.: 1996, ‘Vertical Patterns of Free and Forced Climate Variations’, Geophys. Res. Lett. 23, 1801–1804.Google Scholar
  87. Wigley, T. M. L. and Kelly, P. M.: 1990, ‘Holocene Climatic Change, 14C Wiggles and Variations in Solar Irradiance’, Phil. Trans. Roy. Soc. London A330, 547–560.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
  • H. F. DIAZ
    • 2
    • 3
  1. 1.Institute of GeographyUniversity of Fribourg, PérollesFribourgSwitzerland
  2. 2.NOAA/ERL/CDCBoulderU.S.A
  3. 3.University of MassachusettsAmherstU.S.A

Personalised recommendations