Climatic Change

, Volume 36, Issue 3–4, pp 371–389 | Cite as




Debris flows in the region of Ritigraben (Valais, Swiss Alps), which generally occur in the months of August and September, have been analyzed in relation to meteorological and climatic factors. The principal trigger mechanisms for such debris flows are abundant rain on the one hand, and snow-melt and runoff on the other hand, or a combination of both. Debris flows linked to rain are likely to be triggered when total rainfall amount over a three-day period exceeds four standard deviations, i.e., a significant extreme precipitation event. An analysis of climatological data for the last three decades in the region of Ritigraben has highlighted the fact that the number of extreme rainfall events capable of triggering debris flows in August and September has increased. Similar trends are observed for the 20th Century in all regions of Switzerland. The general rise in temperature in a region of permafrost may also play a role in the response of slope stability to extreme precipitation. At the foot of the Ritigraben, warming trends of both minimum and maximum temperatures have been particularly marked in the last two decades.


Debris Flow Rainfall Event Mountain Region Precipitation Event Slope Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abegg, B. and Froesch, R.: 1994, ‘Climate Change and Winter Tourism: Impact on Transport Companies in the Swiss Canton of Graubünden’, in: Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge Publishing Company, London and New York, pp. 328–340.Google Scholar
  2. Auer, I. and Böhm, R.: 1994, ‘Combined Temperature-Precipitation Variations in Austria during the Instrumental Period’, Theor. Appl. Climatol. 49, 161–174.Google Scholar
  3. Bantle, H.: 1989, Programmdokumentation Klima-Datenbank am RZ-ETH Zurich, Swiss Meteorological Institute, Zurich.Google Scholar
  4. Barsch, D.: 1992, ‘Permafrost Creep and Rockglacier’, Permafrost and Periglacial Processes 3(3), 175–188.Google Scholar
  5. Bearth, P.: 1980, Atlas géologique de la Suisse 1/25'000, feuille 1308, St-Niklaus, Commission géologique suisse.Google Scholar
  6. Beniston, M., Rebetez, M., Giorgi, F., and Marinucci, R.: 1994, ‘An Analysis of Regional Climate Change in Switzerland’, Theor. Appl. Climatol. 49, 135–159.Google Scholar
  7. Beniston, M. and Rebetez, M.: 1996, ‘Regional Behavior of Minimum Temperatures in Switzerland for the Period 1979–1993’, Theor. Appl. Climatol. 53, 231–243.Google Scholar
  8. Beniston, M., Fox, D. G., Adhikary, S., Andressen, R., Guisan, A., Holten, J., Maitima, J., Price, M., and Tessier, L.: 1995, The Impacts of Climate Change on Mountain Regions, Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Chapter 5, Cambridge University Press, Cambridge.Google Scholar
  9. Bouët M.: 1950, ‘La pluie en Valais’, Bulletin de la Murithienne 67, 1–22.Google Scholar
  10. Breiling, M. and Charamza, P.: 1994, ‘Sensitivity of Mountain Runoff and Hydro-Electricity to Changing Climate’, in Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge Publishing Company, London and New York, pp. 91–107.Google Scholar
  11. Caine, N.: 1980, ‘The Rainfall Intensity — Duration Control of Shallow Landslides and Debris Flows’, Geografiska Annaler 62A(1–2), 23–27.Google Scholar
  12. Costa, J. E.: 1988, ‘Rheologic, Geomorphic and Sedimentologic Differentiation of Water Floods, Hyperconcentrated Flows, and Debris Flows’, in Baker, V. R., Kochel, R. G., and Patton, P. C. (eds.), Flood Geomorphology, John Wiley and Sons, New York, pp. 113–122.Google Scholar
  13. Crozier, M. J.: 1986, Landslides: Causes, Consequences and Environment, Croom Helm, London.Google Scholar
  14. Dessens, J.: 1995, ‘Severe Convective Weather in the Context of a Nighttime Global Warming’, Geophys. Res. Lett. 22(10), 1241–1244.Google Scholar
  15. Evans, G. E. and Clague, J. J.: 1994, ‘Recent Climatic Change and Catastrophic Geomorphic Processes in Mountain Environments’, Geomorphology 10, 107–128.Google Scholar
  16. Eybergen, J. and Imeson, F.: 1989, ‘Geomorphologic Processes and Climate Change’, Catena 16, 307–319.Google Scholar
  17. Gajic-Capka, M.: 1990, ‘Maximum Precipitation for Different Short-Term Intervals’, Theor. Appl. Climatol. 41, 33–39.Google Scholar
  18. Gajic-Capka, M.: 1993, ‘Fluctuations and Trends of Annual Precipitation in Different Climatic Regions of Croatia’, Theor. Appl. Climatol. 47, 215–221.Google Scholar
  19. Gardaz, J.-M., Lugon, R., and Monbaron, M.: 1995, ‘Prospection du pergélisol de montagne à l'aide de la méthode BTS (Alpes valaisannes, Suisse)’, UKPIK, Cahiers de l'Institut de Géographie de Fribourg 10, 93–105.Google Scholar
  20. Haeberli, W.: 1973, ‘Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen’, Z. Gletscherkunde Glazialgeol. 9(1–2), 221–227.Google Scholar
  21. Haeberli, W.: 1985, ‘Creep of Mountain Permafrost: Internal Structure and Flow of Alpine Rock Glaciers’, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich 77, p. 142.Google Scholar
  22. Haeberli, W.: 1990, ‘Permafrost’, in VAW (ed.), Schnee, Eis und Wasser der Alpen in einer wärmeren Atmosphäre, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich 108, pp. 71–88.Google Scholar
  23. Haeberli, W.: 1992a, ‘Zur Stabilität von Moränenseen in hochalpinen Gletschergebieten’, Wasser, Energie, Luft 84(11/12), 361–364.Google Scholar
  24. Haeberli, W.: 1992b, ‘Construction, Environmental Problems and Natural Hazards in Periglacial Mountain Belts’, Permafrost Periglacial Proc. 3(2), 111–124.Google Scholar
  25. Haeberli, W.: 1994, ‘Accelerated Glacier and Permafrost Changes in the Alps’, in Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge Publishing Company, London and New York, pp. 91–107.Google Scholar
  26. Haeberli, W.: 1995, ‘Climate Change Impacts on Glaciers and Permafrost’, in Guisan et al. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains, Conserv. Jard. Bot. Genève, pp. 97–103.Google Scholar
  27. Haeberli, W., Rickenmann, D., Zimmermann, M., and Rössli, U.: 1990, ‘Investigation of 1987 Debris Flows in the Swiss Alps: General Concept and Geophysical Soundings’, IAHS Publication 194, 303–310.Google Scholar
  28. Haeberli, W., Guodong, C., Gorbunov, A. P., and Harris, S. A.: 1993, ‘Mountain Permafrost and Climatic Change’, Permafrost Periglacial Proc. 4(2), 165–174.Google Scholar
  29. Hoelzle, M.: 1994, ‘Permafrost und Gletscher im Oberengadin. Grundlagen und Anwendungsbeispiele für automatisierte Schätzverfahren’, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich 132, p. 121.Google Scholar
  30. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990, ‘Intergovernmental Panel on Climate Change, Climate Change, The IPCC Scientific Assessment’, World Meteorological Organization/U.N. Environment Program, Cambridge University Press, Cambridge.Google Scholar
  31. Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.): 1992, ‘Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment’, World Meteorological Organization/U.N. Environment Program, Cambridge University Press, Cambridge, p. 200.Google Scholar
  32. IPCC: 1996, Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, p. 572.Google Scholar
  33. Innes, J.-L.: 1983, ‘Debris Flows’, Progr. Phys. Geogr. 7, 469–501.Google Scholar
  34. Innes, J.-L.: 1985, ‘Magnitude-Frequency Relations of Debris Flows in Northwest Europe’, Geografiska Annaler 67A(1–2), 23–32.Google Scholar
  35. Jones, P. D. and Wigley, T. M. L.: 1990, ‘Global Warming Trends’, Sci. Amer. 263, 84–91.Google Scholar
  36. Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, III W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S.: 1987, ‘Real-Time Landslide Warning During Heavy Rainfall’, Science 238, 921–925.Google Scholar
  37. King, L. and Akerman, J.: 1993, ‘Mountain Permafrost in Europe’, in Permafrost, Proceedings of the Sixth International Conference 2, Beijing, pp. 1022–1027.Google Scholar
  38. Lewin, J. and Warburton, J.: 1994, ‘Debris Flows in an Alpine Environment’, Geography 79(343), 98–107.Google Scholar
  39. Lugon, R.: 1997, Influence des changements climatiques sur la stabilité des terrains meubles en zone de pergélisol dans les Alpes valaisannes. Deux études de cas: le torrent du Ritigraben (Mattertal) et la moraine du glacier du Dolent (Val Ferret), Rapport final PNR 31, vdf, Hochschulverlag, Zürich (in preparation).Google Scholar
  40. Mani, P.: 1994, Ritigraben (Mattertal), Grundlagen-Zusammenstellung und erste Interpretation, Geo7 Bericht fuer das Baudepartement des Kantons Wallis, Nr. 9407.01.Google Scholar
  41. Martin, H. E. and Whalley, W. B.: (1987), ‘Rock Glaciers, Part 1: Rockglacier Morphology, Classification and Distribution’, Progr. Phys. Geogr. 11(2), 261–282.Google Scholar
  42. Mayer-Rosa, D. (ed.): 1986, Tremblements de terre. Origine, risque et aide, commission nationale suisse pour l'Unesco, commission suisse de géophysique.Google Scholar
  43. Neininger, B. and Haeberli, W.: 1992, in Gemeinde Münster (ed.), ‘Münster — als der Bach kam’, pp. 55–77.Google Scholar
  44. Pfister, C.: 1988, ‘Fluctuations climatiques et prix céréaliers en Europe du XVIe au XXe siècle’, Annales E.S.C. 41/1, 25–53.Google Scholar
  45. Pfister, C. and Hächler, S.: 1990, Hochwasserkatastrophern im schweizerischen Alpenraum seit dem 14. Jahrhundert, Bericht Nationales Forschungsprogramm ‘Analyse der Hochwasser 1987’.Google Scholar
  46. Rebetez, M. and Barras, C.: 1993, Le Climat des Romands, Stratus, Oron-la-Ville.Google Scholar
  47. Rebetez, M.: 1994, Perception du temps et du climat: une analyse du climat de Suisse romande sur la base des dictons populaires, Ph.D. Thesis, University of Lausanne, Stratus, Oron-la-Ville.Google Scholar
  48. Rebetez, M.: 1996a, ‘Public Expectation as an Element of Human Perception of Climate Change’, Clim. Change 32, 495–509.Google Scholar
  49. Rebetez, M.: 1996b, ‘Seasonal Relationship between Temperature, Precipitation and Snow Cover in a Mountainous Region’, Theor. Appl. Climatol. 54, 99–106.Google Scholar
  50. Rickenmann, D.: 1990, ‘Bedload Transport Capacity of Slurry Flows at Steep Slopes, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich 103, p. 249.Google Scholar
  51. Röthlisberger, G.: 1991, ‘Chronik der Unwetterschäden in der Schweiz’, Berichte der Eidgenössischen Forschunganstalt für Wald, Schnee und Landschaft 330, p. 122.Google Scholar
  52. Schnydrig, A. L.: 1952, ‘Grächen, Walliser Bergdorf an der Mischabel’, Paul Haupt, Bern, p. 104.Google Scholar
  53. Service hydrologique et géologique national: 1994, La crue de 1993 en Valais et au Tessin, mesures effectuées et premières conclusions, Communication 19a, Berne.Google Scholar
  54. Sidle, R. C., Pearce, A. J., and O'Loughlin, C. L.: 1985, ‘Hillslope Stability and Land Use’, Amer. Geophys. Union, Water Res. Monogr. 11, Washington D.C., p. 140.Google Scholar
  55. Uttinger, H.: 1949, ‘Les précipitations en Suisse 1901–1940’, Guide de l'économie hydraulique et de l'électricité en Suisse 2, Elektrizitätwirtschaft, Zürich, p. 103.Google Scholar
  56. Varnes, D. J.: 1978, ‘Slope Movement Types and Processes’, in Schuster, R. L. and Krizek, R. J. (eds.), Landslides Analysis and Control, Transport Res. Board Spec. Rept. 176, Nat. Acad. Sc., Washington D. C, pp. 11–33.Google Scholar
  57. Vonder Mühll, D.: 1993, ‘Geophysikalische Untersuchungen im Permafrost des Oberengadins’, Mitteilungen der Versuchsanstalt fuer Wasserbau, Hydrologie und Glaziologie, ETH Zürich 122, p. 222.Google Scholar
  58. Vonder Mühll, D., Hoelzle, M., and Wagner, S.: 1994, ‘Permafrost in den Alpen’, Die Geowissenschaften 12(5–6), 149–153.Google Scholar
  59. Walder, J. S. and Driedger, C. L.: 1994, ‘Rapid Geomorphic Change Caused by Glacial Outburst Floods and Debris Flows along Tahoma Creek, Mount Rainier, Washington, U.S.A.’, Arctic and Alpine Res. 26(4), 319–327.Google Scholar
  60. Zimmermann, M.: 1990a, ‘Periglaziale Murgänge’, in VAW (ed.), Schnee, Eis und Wasser der Alpen in einer wärmeren Atmosphäre', Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich 108, pp. 89–107.Google Scholar
  61. Zimmermann, M.: 1990b, ‘Debris Flows 1987 in Switzerland: Geomorphological and Meteorological Aspects’, IAHS, Hydrol. Mountainous Regions 2(194), 387–393.Google Scholar
  62. Zimmermann, M. and Haeberli, W.: 1992, ‘Climatic Change and Debris Flow Activity in High-Mountain Areas — A Case Study in the Swiss Alps’, Greenhouse-Impact on Cold-Climate Ecosystems and Landscapes, Catena Suppl. 22, 59–72.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 2
    • 2
  1. 1.Swiss Federal Institute for Forest, Snow, and Landscape ResearchLausanneSwitzerland
  2. 2.Department of Geography of the University of FribourgSwitzerland

Personalised recommendations