Journal of Muscle Research & Cell Motility

, Volume 19, Issue 4, pp 415–429 | Cite as

Mechanical alterations in smooth muscle from mice lacking desmin

  • R. Sjuve
  • A. Arner
  • Z. Li
  • B. Mies
  • D. Paulin
  • M. Schmittner
  • J. V. Small


Mice with a null mutation introduced in the desmin gene were used to study the mechanical role of intermediate filaments in smooth muscle cells. Vas deferens (VD), urinary bladder (UB) and portal vein (PV) preparations were obtained from adult animals lacking desmin (Des −/−) and from age- and weight-matched wild-type animals (Des +/+). Active force per cross-sectional area was decreased in the smooth muscle of the Des −/− compared with Des +/+ mice (VD to 42%; UB to 34%). Quantitative gel electrophoresis suggests a marginally lower cellular content of myosin, but the organization of the contractile apparatus appeared unchanged by electron microscopy. A similar reduction in stress was measured in Des −/− skinned fibres showing that altered activation mechanisms were not involved. The results indicate that the reduced active force is caused by low intrinsic force generation of the contractile filaments or subtle modifications in the coupling between the contractile elements and the cytoskeleton. The relationship between length and passive stress was less steep in the Des −/− samples and a second length force curve after maximal extension revealed a loss of passive stress. The maximal shortening velocity was reduced in Des −/− skinned VD and UB preparations by approximately 25–40%. This was associated with an increased relative content of the basic essential myosin light chain, suggesting that alterations in the contractile system towards a slower, more economical muscle had occurred. PV preparations showed no difference in mechanical properties in Des +/+ and Des −/− animals, a result that was consistent with the predominance of vimentin instead of desmin in this vascular tissue. In conclusion, the results show that, although intermediate filaments in smooth muscle are not required for force generation or maintenance of passive tension, they have a role in cellular transmission of both active and passive force.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arheden, H., Arner, A. & Hellstrand, P. (1988) Crossbridge behaviour in skinned smooth muscle of the guinea-pig taenia coli at altered ionic strength. J. Physiol. 403, 539–58.PubMedGoogle Scholar
  2. Arner, A. (1982) Mechanical characteristics of chemically skinned guinea-pig taenia coli. J. Physiol. 395, 277–84.CrossRefGoogle Scholar
  3. Arner, A. (1983) Force-velocity relation in chemically skinned rat portal vein: effect of Ca2+ and Mg2+. Plügers Arch. 397, 6–12.CrossRefGoogle Scholar
  4. Arner, A. & Hellstrand, P. (1985) Effects of calcium and substrate on force-velocity relations and energy turn-over in skinned smooth muscle of guinea-pig taenia coli. J. Physiol. 360, 347–65.PubMedGoogle Scholar
  5. Berner, P. F., Somlyo, A. V. & Somlyo, A. P. (1981a) Hypertrophy-induced increase of intermediate filament in vascular smooth muscle. J. Cell Biol. 88, 96–101.PubMedCrossRefGoogle Scholar
  6. Berner, P. F., Frank, E., Holtzer, H. & Somlyo, A. P. (1981b) The intermediate filament proteins of rabbit vascular smooth muscle: immunofluorescent studies of desmin and vimentin. J. Muscle Res. Cell Motil. 2, 439–52.CrossRefGoogle Scholar
  7. Bond, M. & Somlyo, A. V. (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J. Cell Biol. 95, 403–13.PubMedCrossRefGoogle Scholar
  8. Cooke, P. H. (1976) A filamentous cytoskeleton in vertebrate smooth muscle fibres. J. Cell Biol. 68, 539–56.PubMedCrossRefGoogle Scholar
  9. Cooke, P. H. & Chase, R. H. (1971) Potassium chloride-insoluble myofilaments in vertebrate smooth muscle cells. Exp. Cell Res. 66, 417–25.PubMedCrossRefGoogle Scholar
  10. Frank, E. D. & Warren, L. (1981) Aortic smooth muscle cells contain vimentin instead of desmin. Proc. Natl. Acad. Sci. USA 78, 3020–24.PubMedCrossRefGoogle Scholar
  11. Fuchs, E. (1994) Intermediate filaments and disease: mutations that cripple cell strength. J. Cell Biol. 125, 511–16.PubMedCrossRefGoogle Scholar
  12. Fuchs, E. & Weber, K. (1994) Intermediate filaments: structure, dynamics, function and disease. Ann. Rev. Biochem. 63, 345–82.PubMedGoogle Scholar
  13. Gabella, G. (1979) Hypertrophic smooth muscle. IV. Myofilaments, intermediate filaments and some mechanical properties. Cell Tissue Res. 201, 278–88.Google Scholar
  14. Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., Dechastonay, C., Vanderkerckhove, J., Weber, K. & Franke, W.W. (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific-type actin. Proc. Natl. Acad. Sci. USA 78, 298–302.PubMedCrossRefGoogle Scholar
  15. Geiger, B., Dutton, A. H., Tokuyasu, K. T. & Singer, S. J. (1981) Immunoelectron microscope studies of membrane-microfilament interactions: distribution of alpha-actinin, tropomyosin and vinculin in intestinal brush border and chicken gizzard smooth muscle cells. J. Cell Biol. 91, 614–28.PubMedCrossRefGoogle Scholar
  16. Gimona, M., Herzog, M., Vandekerckhove, J. & Small, J. V. (1990) Smooth muscle specific expression of calponin. FEBS Lett. 274, 159–62.PubMedCrossRefGoogle Scholar
  17. Gimona, M., Sparrow, M. P., Strasser, P., Herzog, M., Lando, Z. & Small, J. V. (1992) Calponin and SM22 isoforms in avian and mammalian smooth muscle: absence of phosphorylation in vivo. Eur. J. Biochem. 205, 1067–75.PubMedCrossRefGoogle Scholar
  18. He, H.-Z., Ferenczi, M. A., Trentham, D. R., Webb, M. R., Brune, M., Somlyo, A. P. & Somlyo, A. V. (1997) Kinetics of phosphate (Pi) release in activated isometric smooth muscle. Biophysical J. 72, A177.Google Scholar
  19. Hill, A. V. (1938) The heat of shortening and the dynamic constants of shortening. Proc. R. Soc. Lond. (Biol.) 126, 136–95.CrossRefGoogle Scholar
  20. Kargacin, G. J., Cooke, P. H., Abramson, S. B. & Fay, F. S. (1989) Periodic organisation of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J. Cell Biol. 108, 1465–75.PubMedCrossRefGoogle Scholar
  21. Kelley, C. A., Takahashi, M., Yu, J. H. & Adelstein, R.S. (1993) An insert of seven amino acids confers enzymatic differences between smooth muscle myosins from the intestines and the vasculature. J. Biol. Chem. 268, 12848–54.PubMedGoogle Scholar
  22. Lazarides, E. (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 238, 249–56.CrossRefGoogle Scholar
  23. Li, Z., Colucci-Guyon, E., Pincon-Raymond, M., Mericskay, M., Pournin, S. & Paulin, D. (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev. Biol. 175, 362–6.PubMedCrossRefGoogle Scholar
  24. Malmqvist, U. & Arner, A. (1991) Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Eur. J. Physiol. 418, 523–30.CrossRefGoogle Scholar
  25. Malmqvist, U., Arner, A. & Uvelius, B. (1991) Contractile and cytoskeletal proteins in smooth muscle during hypertrophy and its reversal. Am. J. Physiol. 260, C1085–93.PubMedGoogle Scholar
  26. Milner, D. J., Wietzer, G., Tran, D., Bradley, A. & Capetanaki, Y. (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell. Biol. 134, 1255–70.PubMedCrossRefGoogle Scholar
  27. North, A. J., Gimona, M., Cross, R. A. & Small, J. V. (1994a) Calponin is localised in both the contractile apparatus and the cytoskeleton of smooth muscle cells. J. Cell Sci. 107, 437–44.PubMedGoogle Scholar
  28. North, A. J., Gimona, M., Lando, Z. & Small, J. V. (1994b) Actin isoform compartments in chicken gizzard smooth muscle cells. J. Cell Sci. 107, 445–55.PubMedGoogle Scholar
  29. Österman, Å. & Arner, A. (1995) Effects of inorganic phosphate on cross-bridge kinetics at different levels of activation levels in skinned guinea-pig smooth muscle. J. Physiol. 484, 369–83.PubMedGoogle Scholar
  30. Pieper, F. R., Schaart, G., Krimpenfort, P. J., Henderik, J.B., Moshage, H.J., van der Kemp, A., Ramaekers, F.C., Berns, A. & Bloemendal, H. (1989) Transgenic expression of the muscle-specific intermediate filament protein desmin in non-muscle cells. J. Cell Biol. 108, 1009–24.PubMedCrossRefGoogle Scholar
  31. Rovner, A., Freyson, Y. & Trybus, K.M. (1997) An insert in the motor domain determines the functional properties of expressed smooth muscle myosin isoforms. J. Muscle Res. Cell Motil. 18, 103–10.PubMedCrossRefGoogle Scholar
  32. RÜegg, C. J. (1971) Smooth muscle tone. Physiol. Rev. 51, 201–93.PubMedGoogle Scholar
  33. Sjuve, R., Haase, H., Morano, I., Uvelius, B. & Arner, A. (1996) Contraction kinetics and myosin isoform composition in smooth muscle from hypertrophied rat urinary bladder. J. Cell Biochem. 63, 86–93.PubMedCrossRefGoogle Scholar
  34. Sjuve, R., Li, Z., Paulin, D., Small, J. V. & Arner, A. (1997) Smooth muscle from mice lacking desmin generates lower active force and have increased compliance. Biophysical J. 72, A384.Google Scholar
  35. Skalli, O. & Goldman, R. D. (1991) Recent insights in the assembly, dynamics and function of intermediate filament network. Cell Motil. Cytoskeleton 19, 67–9.PubMedCrossRefGoogle Scholar
  36. Small, J. V. (1995) Structure-function relationships in smooth muscle: the missing links. Bioessays 17, 785–92.PubMedCrossRefGoogle Scholar
  37. Small, J. V., FÜrst, D. O. & Demey, J. (1986) Localisation of filamin in smooth muscle. J. Cell Biol. 102, 210–20.PubMedCrossRefGoogle Scholar
  38. Small, J. V., FÜrst, D. O. & Thornell, L.-E. (1992) The cytoskeletal lattice of muscle cells. Eur. J. Biochem. 208, 559–72.PubMedCrossRefGoogle Scholar
  39. Small, J. V. & North, A. J. (1995) Architecture of the smooth muscle cell. In The Vascular Smooth Muscle Cell (edited by Schwartz, S. M. & Mecham, R. P.) pp. 169–88. Orlando: Academic Press.Google Scholar
  40. Small, J. V., Paulin, D., Li, Z., Mies, B., Schmittner, M., North, A., Stromer, M. & Arner, A. (1996) The cytoskeleton of smooth muscle cells. Abstract at 11th Annual Meeting of the European Cytoskeletal Forum, Maastricht, Holland, August 1996.Google Scholar
  41. Small, J. V. & Sobieszek, A. (1977) Studies on the function and composition of the 10-nm (100 Å) filaments of vertebrate smooth muscle. J. Cell Sci. 23, 243–68.PubMedGoogle Scholar
  42. Somlyo, A. P. (1993) Myosin isoforms in smooth muscle: how may they affect function and structure? J. Muscle Res. Cell Motil. 14, 557–63.PubMedCrossRefGoogle Scholar
  43. Somlyo, A. P., Devine, C. E., Somlyo, A. P. & Rice, R.V. (1973) Filament organisation in vertebrate smooth muscle. Phil. Trans. R. Soc. Lond. Ser. B. 265, 223–9.Google Scholar
  44. Thornell, L.-E. & Price, M.G. (1991) The cytoskeleton in muscle cells in relation to function. Biochem. Soc. Trans. 19, 1116–19.PubMedGoogle Scholar
  45. Vigoreaux, J. O. (1994) The muscle Z band: lessons in stress management. J. Muscle Res. Cell Motil. 15, 237–55.PubMedGoogle Scholar
  46. Wang, N., Butler, J. P. & Ingber, D. E. (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–7.PubMedGoogle Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • R. Sjuve
    • 1
  • A. Arner
    • 1
  • Z. Li
    • 2
  • B. Mies
    • 3
  • D. Paulin
    • 2
  • M. Schmittner
    • 3
  • J. V. Small
    • 3
  1. 1.Department of Physiology and NeuroscienceLund UniversityLundSweden
  2. 2.Institut PasteurParisFrance
  3. 3.Institute of Molecular BiologySalzburgAustria

Personalised recommendations