Climatic Change

, Volume 40, Issue 3–4, pp 495–518 | Cite as

Biotic Feedbacks in the Warming of the Earth

  • G. M. Woodwell
  • F. T. Mackenzie
  • R. A. Houghton
  • M. Apps
  • E. Gorham
  • E. Davidson
Article

Abstract

A positive correlation exists between temperature and atmospheric concentrations of carbon dioxide and methane over the last 220,000 years of glacial history, including two glacial and three interglacial periods. A similar correlation exists for the Little Ice Age and for contemporary data. Although the dominant processes responsible may be different over the three time periods, a warming trend, once established, appears to be consistently reinforced through the further accumulation of heat-trapping gases in the atmosphere; a cooling trend is reinforced by a reduction in the release of heat-trapping gases. Over relatively short periods of years to decades, the correspondence between temperature and greenhouse gas concentrations may be due largely to changes in the metabolism of terrestrial ecosystems, whose respiration, including microbial respiration in soils, responds more sensitively, and with a greater total effect, to changes in temperature than does gross photosynthesis. Despite the importance of positive feedbacks and the recent rise in surface temperatures, terrestrial ecosystems seem to have been accumulating carbon over the last decades. The mechanisms responsible are thought to include increased nitrogen mobilization as a result of human activities, and two negative feedbacks: CO2 fertilization and the warming of the earth, itself, which is thought to lead to an accumulation of carbon on land through increased mineralization of nutrients and, as a result, increased plant growth. The relative importance of these mechanisms is unknown, but collectively they appear to have been more important over the last century than a positive feedback through warming-enhanced respiration. The recent rate of increase in temperature, however, leads to concern that we are entering a new phase in climate, one in which the enhanced greenhouse effect is emerging as the dominant influence on the temperature of the earth. Two observations support this concern. One is the negative correlation between temperature and global uptake of carbon by terrestrial ecosystems. The second is the positive correlation between temperature and the heat-trapping gas content of the atmosphere. While CO2 fertilization or nitrogen mobilization (either directly or through a warming-enhanced mineralization) may partially counter the effects of a warming-enhanced respiration, the effect of temperature on the metabolism of terrestrial ecosystems suggests that these processes will not entirely compensate for emissions of carbon resulting directly from industrial and land-use practices and indirectly from the warming itself. The magnitude of the positive feedback, releasing additional CO2, CH4, and N2O, is potentially large enough to affect the rate of warming significantly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M., and Woodward, F. I.: 1990, ‘Increases in Terrestrial Carbon Storage from the Last Glacial Maximum to the Present’, Nature 348, 711-714.Google Scholar
  2. Allen, L. H. and Amthor, J. S.: 1995, ‘Plant Physiological Responses to Elevated CO2, Temperature, Air Pollution, and UV-B Radiation’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 51-84.Google Scholar
  3. Alley, D. B., Meese, D.A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A., and Zielinski, G. A.: 1993, ‘Abrupt Increase in Greenland Snow Accumulation at the End of the Younger Dryas Event’, Nature 362, 527-529.Google Scholar
  4. Apps, M. J. and Kurz, W. A.: 1994, ‘The Role of Canadian Forests in the Global Carbon Budget’, in Kanninen, M. (ed.), Carbon Balance of World’s Forested Ecosystems: Towards a Global Assessment, Publications of the Academy of Finland 3/93, Helsinki, pp. 14-39.Google Scholar
  5. Bakwin, P. S. (ed.), Conway, T. J., Dlugokencky, E. J., Guenther, D. W., Kitzis, D., Lang, P. M., Masarie, K. A., Novelli, P. C., Thoning, K. W., Tans, P. P., and Waterman, L. S.: 1994, ‘Carbon Cycle Division’, in Peterson, J. T. and Rosson, R. M. (eds.), Climate Monitoring and Diagnostics Laboratory, Number 22, Summary Report 1993, U.S. Department of Commerce/NOAA, Boulder, Colorado, pp. 18-30.Google Scholar
  6. Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: 1987, ‘Vostok Ice Core Provides 160,000-Year Record of Atmospheric CO2’, Nature 329, 408-414.Google Scholar
  7. Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., and Clarke, A. D.: 1996, ‘Atmospheric Gas Concentrations over the Past Century Measured in Air from Firn at the South Pole’, Nature 383, 231-235.Google Scholar
  8. Bekki, S. and Law, K. S.: 1997, ‘Sensitivity of the Atmospheric CH4 Growth Rate to Global Temperature Changes Observed from 1980 to 1992’, Tellus 49B, 409-416.Google Scholar
  9. Bender, M., Ellis, T., Tans, P., Francey, R., and Lowe, D.: 1996, ‘Variability in the O2/N2 Ratio of Southern Hemisphere Air, 1991-1994: Implications for the Carbon Cycle’, Glob. Biogeochem. Cycles 10, 9-21.Google Scholar
  10. Bird, M. I., Chivas, A. R., and Head, J.: 1996, ‘A Latitudinal Gradient in Carbon Turnover Times in Forest Soils’, Nature 381, 143-146.Google Scholar
  11. Bird, M. I., Lloyd, J., and Farquhar, G. D.: 1994a, ‘Terrestrial Carbon Storage at the LGM’, Nature 371, 566.Google Scholar
  12. Bird, M. I., Haberle, S. G., and Chivas, A. R.: 1994b, ‘Effect of Altitude on the Carbon-Isotope Composition of Forest and Grassland Soils from Papua New Guinea’, Glob. Biogeochem. Cycles 8, 13-22.Google Scholar
  13. Birdsey, R. A., Plantinga, A. J., and Heath, L. S.: 1993, ‘Past and Prospective Carbon Storage in United States Forests’, Forest Ecol. Managem. 58, 33-40.Google Scholar
  14. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., and Raynaud, D.: 1995, ‘Variations in Atmospheric Methane Concentration During the Holocene Epoch. Nature 374, 46-49.Google Scholar
  15. Braswell, B. H., Schimel, D. S., Linder, E., and Moore, B.: 1997, ‘The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability’, Science 278, 870-872.Google Scholar
  16. Broecker, W. S.: 1987, ‘Unpleasant Surprises in the Greenhouse?’, Nature 328, 123-126.Google Scholar
  17. Broecker, W. S., Andree, M., Wolfli, W., Oeschger, H., Bonani, G., Kennett, J., and Peteet, D.: 1988, ‘The Chronology of the Last Deglaciation: Implication to the Cause of the Younger Dryas Event’, Paleoceanography 3, 1-19.Google Scholar
  18. Broecker, W. S., Bond, G., Klas, M., Bonani, G., and Wolfli, W.: 1990, ‘A Salt Oscillator in the Glacial Atlantic? 1. The Concept’, Paleoceanography 5, 469-477.Google Scholar
  19. Charlson, R. J.: 1995, ‘The Vanishing Climatic Role of Dimethyl Sulfide’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 251-262.Google Scholar
  20. Ciais, P., Tans, P. P., White, J. W. C., Trolier, M., Francey, R. J., Berry, J. A., Randall, D. R., Sellers, P. J., Collatz, J. G., and Schimel, D. S.: 1995, ‘Partitioning of Ocean and Land Uptake of CO2as Inferred by d13C Measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network’, J. Geophys. Res. 100, 5051-5070.Google Scholar
  21. Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K.W., Kitzis, D. R., Masarie, K. A., and Zhang, N.: 1994, ‘Evidence for Interannual Variability of the Carbon Cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network’, J. Geophys. Res. 99, 22,831-22,855.Google Scholar
  22. Crowley, T. J.: 1995, ‘Ice Age Terrestrial Carbon Changes Revisited’, Glob. Biogeochem. Cycles 9, 377-389.Google Scholar
  23. Dai, A. and Fung, I.Y.: 1993, ‘Can Climate Variability Contribute to the ‘Missing’ CO2 Sink?’, Glob. Biogeochem. Cycles 7, 599-609.Google Scholar
  24. Dansgaard, W., White, J. W. C., and Johnsen, S. J.: 1993, ‘The Abrupt Termination of the Younger Dryas Climate Event’, Nature 339, 532-534.Google Scholar
  25. Davidson, E. A.: 1995, ‘Linkages Between Carbon and Nitrogen Cycling and Their Implications for Storage of Carbon in Terrestrial Ecosystems’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 219-230.Google Scholar
  26. Davis, M. B. and Zabinski, C.: 1992, ‘Changes in Geographical Range Resulting from Greenhouse Warming: Effects on Biodiversity in Forests’, in Peters, R. L. and Lovejoy, T. E. (eds.), Global Warming and Biological Diversity, Yale University Press, New Haven, pp. 297-308.Google Scholar
  27. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., and Wisniewski, J.: 1994, ‘Carbon Pools and Flux of Global Forest Ecosystems’, Science 263, 185-190.Google Scholar
  28. Dutton, E. G. and Christy, J. R.: 1992, ‘Solar Radiative Forcing at Selected Locations and Evidence for Global Lower Tropospheric Cooling Following the Eruptions of El Chichón and Pinatubo’, Geophys. Res. Lett. 19, 2313-2316.Google Scholar
  29. Enting, I. G., Trudinger, C. M., and Francey, R. J.: 1995, ‘A Synthesis Inversion of the Concentration and d13C of Atmospheric CO2’, Tellus 47B, 35-52.Google Scholar
  30. Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M., and Morgan, V. I.: 1996, ‘Natural and Anthropogenic Changes in Atmospheric CO2 Over the Last 1000 Years From Air in Antarctic Ice and Firn’, J. Atmos. Res. 101, 4115-4128.Google Scholar
  31. Figge, R. A. and White, J. W. C.: 1995, ‘High-Resolution Holocene and Late Glacial Atmospheric CO2 Record: Variability Tied to Changes in Thermohaline Circulation’, Glob. Biogeochem. Cycles 9, 391-403.Google Scholar
  32. Francey, R. J., Tans, P. P., Allison, C. E., Enting, I. G., White, J. W. C., and Trolier, M.: 1995, ‘Changes in Oceanic and Terrestrial Carbon Uptake Since 1982’, Nature 373, 326-330.Google Scholar
  33. Friedlingstein, P., Delire, C., Muller, J. F., and Gerard, J. C.: 1992, ‘The Climate Induced Variation of the Continental Biosphere: AModel Simulation of the Last GlacialMaximum’, Geophys. Res. Lett. 19, 897-900.Google Scholar
  34. Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A., and Schnoor, J. L.: 1995, ‘Nitrogen Fixation: Anthropogenic Enhancement-Environmental Response’, Glob. Biogeochem. Cycles 9, 235-252.Google Scholar
  35. Garrels, R. M., Mackenzie, F. T., and Hunt, C.: 1975, Chemical Cycles and the Global Environment, Assessing Human Influences, W. Kaufman, Inc., Los Altos, California, 206 pp.Google Scholar
  36. Gorham, E.: 1995, ‘The Biogeochemistry of Northern Peatlands and Its Possible Responses to Global Warming’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 169-187.Google Scholar
  37. Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C.: 1996, ‘Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual Climate Variability’, Science 271, 1576-1578.Google Scholar
  38. Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., and Gash, J.: 1995, ‘Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993’, Science 270, 778-780.Google Scholar
  39. Halsey, L. A., Vitt, D. H., and Zoltai, S. C.: 1995, ‘Disequilibrium Response of Permafrost in Boreal Continental Western Canada to Climate Change’, Clim. Change 30, 57-73.Google Scholar
  40. Heimann, M. and Maier-Reimer, E.: 1996, ‘On the Relations Between the Oceanic Uptake of CO2 and Its Carbon Isotopes’, Glob. Biogeochem. Cycles 10, 89-110.Google Scholar
  41. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990, Climate Change. The IPCC Scientific Assessment, Cambridge University Press, Cambridge.Google Scholar
  42. Houghton, J. T., Callander, B. A., and Varney, S. K.: 1992, Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K.Google Scholar
  43. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K.: 1996, Climate Change 1995. The Science of Climate Change, Cambridge University Press, Cambridge.Google Scholar
  44. Houghton, R. A.: 1995, ‘Effects of Land-Use Change, Surface Temperature, and CO2 Concentration on Terrestrial Stores of Carbon’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 333-350.Google Scholar
  45. Houghton, R. A.: 1996, ‘Terrestrial Sources and Sinks of Carbon Inferred from Terrestrial Data’, Tellus 48B, 420-432.Google Scholar
  46. Houghton, R. A.: In press, ‘Historic Role of Forests in the Global Carbon Cycle’, in Kohlmaier, G. H., Weber, M., and Houghton, R. A. (eds.), Carbon Mitigation Potentials of Forestry and Wood Industry, Springer-Verlag.Google Scholar
  47. Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in the Carbon Content of Terrestrial Biota and Soils Between 1860 and 1980: A Net Release of CO2 to the Atmosphere’, Ecol. Monogr. 53, 235-262.Google Scholar
  48. Hughen, K. A., Overpeck, J. T., Peterson, L. C., and Trumbore, S.: 1996, ‘Rapid Climate Changes in the Tropical Atlantic Region During the Last Deglaciation’, Nature 380, 51-54.Google Scholar
  49. Hurrell, J. W. and Trenberth, K. E.: 1997, ‘Spurious Trends in Satellite MSU Temperatures from Merging Different Satellite Records’, Nature 386, 164-167.Google Scholar
  50. Jenkinson, D. S., Adams, D. E., and Wild, A.: 1991, ‘Model Estimates of Carbon Dioxide Emissions from Soil in Response to Global Warming’, Nature 351, 304-306.Google Scholar
  51. Jones, P. D.: 1994, ‘Hemispheric Surface Air Temperature Variations: A Reanalysis and an Update to 1993’, J. Clim. 7, 1794-1802.Google Scholar
  52. Jouzel, J., Barkov, N. I., Barnola, J. M., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.: 1993, ‘Extending the Vostok Ice-Core Record of Paleoclimate to the Penultimate Glacial Period’, Nature 364, 407-412.Google Scholar
  53. Kauppi, P. E., Mielikainen, M., and Kuusela, K.: 1992, ‘Biomass and Carbon Budget of European Forests’, 1971-1990, Science 256, 70-74.Google Scholar
  54. Keeling, C. D.: 1973, ‘The Carbon Dioxide Cycle: Reservoir Models to Depict the Exchange of Atmospheric Carbon Dioxide with the Oceans and Land Plants’, in Rasool, S. I. (ed.), Chemistry of the Lower Atmosphere, Plenum Press, New York, pp. 251-329.Google Scholar
  55. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H.: 1989, ‘A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds: 1. Analysis of Observational Data’, in Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and the Western Americas, Geophysical Monograph 55, American Geophysical Union, Washington, D.C., pp. 165-236.Google Scholar
  56. Keeling, C. D., Whorf, T. P., Wahlen, M., and van der Pilcht, M.: 1995, ‘Interannual Extremes in the Rate of Rise of Atmospheric Carbon Dioxide Since 1980’, Nature 375, 666-670.Google Scholar
  57. Keeling, C. D., Chin, J. F. S., and Whorf, T. P.: 1996, ‘Increased Activity of Northern Vegetation Inferred from Atmospheric CO2 Measurements’, Nature 382, 146-149.Google Scholar
  58. Keeling, R. F., Piper, S. C., and Heimann, M.: 1996, ‘Global and Hemispheric CO2 Sinks Deduced from Changes in Atmospheric O2 Concentration’, Nature 381, 218-221.Google Scholar
  59. Kellogg, W. W.: 1983, ‘Feedback Mechanisms in the Climate System Affecting Future Levels of Carbon Dioxide’, J. Geophys. Res. 88C, 1263-1269.Google Scholar
  60. Khalil, M. A. K. and Rasmussen, R. A.: 1989, ‘Climate-Induced Feedbacks for the Global Cycles of Methane and Nitrous Oxide’, Tellus 41B, 554-559.Google Scholar
  61. Kolchugina, T. P. and Vinson, T. S.: 1993, ‘Carbon Sources and Sinks in Forest Biomes of the Former Soviet Union’, Glob. Biogeochem. Cycles 7, 291-304.Google Scholar
  62. Kuo, C., Lindberg, C., and Thomson, D. J.: 1990, ‘Coherence Established Between Atmospheric Carbon Dioxide and Global Temperature’, Nature 343, 709-714.Google Scholar
  63. Kurz, W. A., Apps, M. J., Stocks, B. J., and Volney, W. J. A.: 1995, ‘Global Climate Change: Disturbance Regimes and Biospheric Feedbacks of Temperate and Boreal Forests’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 119-133.Google Scholar
  64. Lashof, D. A.: 1989, ‘The Dynamic Greenhouse: Feedback Processes That May Influence Future Concentrations of Atmospheric Trace Gases and Climatic Change’, Clim. Change 14, 213-242.Google Scholar
  65. Lehman, S. J. and Keigwin, L. D.: 1992, ‘Sudden Changes in North Atlantic Circulation During the Last Deglaciation’, Nature 356, 757-762.Google Scholar
  66. Leuenberger, M. and Siegenthaler, U.: 1992, ‘Ice-Age Atmospheric Concentration of Nitrous Oxide From an Antarctic Ice Core’, Nature 360, 449-451.Google Scholar
  67. Lorius, C., Barkov, N. I., Jouzel, J., Korotkevich, Y. S., Kotlyakov, V. M., and Raynaud, D.: 1988, ‘Antarctic Ice Core: CO2 and Climatic Change Over the Last Climatic Cycle’, Eos 69, 681, 683-684.Google Scholar
  68. MacDonald, G. J.: 1990, ‘Role of Methane Clathrates in Past and Future Climates’, Clim. Change 16, 247-281.Google Scholar
  69. Mackenzie, F. T. and Mackenzie, J. A.: 1995, Our Changing Planet, Prentice-Hall, Englewood Cliffs, New Jersey, 387 pp.Google Scholar
  70. Marston, J. B., Oppenheimer, M., Fujita, R. M., and Gaffin, S. R.: 1991, ‘Carbon Dioxide and Temperature’, Nature 349, 573-574.Google Scholar
  71. Melillo, J. M., Prentice, I. C., Farquhar, G. D., Schulze, E.-D., and Sala, O. E.: 1996, ‘Terrestrial Biotic Responses to Environmental Change and Feedbacks to Climate’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K., Climate Change 1995. The Science of Climate Change, Cambridge University Press, Cambridge, pp. 445-481.Google Scholar
  72. Nisbet, E. G. and Ingham, B.: 1995, ‘Methane Output from Natural and Quasi-Natural Sources: A Review of the Potential for Change and for Biotic and Abiotic Feedbacks’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 188-218.Google Scholar
  73. Post, W.M., Pastor, J., Zinke, P. J., and Stangenberger, A. G.: 1985, ‘Global Patterns of Soils Nitrogen Storage’, Nature 317, 613-616.Google Scholar
  74. Post, W. M., Pastor, J., King, A. W., and Emanuel, W. R.: 1992, ‘Aspects of the Interaction Between Vegetation and Soil Under Global Change’, Water, Air, Soil Pollut. 64, 345-363.Google Scholar
  75. Prentice, I. C. and Sykes, M. T.: 1995, ‘Vegetation Geography and Global Carbon Storage Changes’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 304-312.Google Scholar
  76. Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Denissenko, O., and Bartlein, P. J.: 1993, ‘Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum’, Glob. Ecol. Biogeogr. Lett. 3, 67-76.Google Scholar
  77. Prentice, K. C. and Fung, I. Y.: 1990, ‘The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48-51.Google Scholar
  78. Quay, P. D., Tilbrook, B., and Wong, C. S.: 1992, ‘Oceanic Uptake of Fossil Fuel CO2: Carbon-13 Evidence’, Science 256, 74-79.Google Scholar
  79. Raich, J.W. and Schlesinger, W. H.: 1992, ‘The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate’, Tellus 44B, 81-99.Google Scholar
  80. Raynaud, D., Jouzel, J., Barnola, J. M., Chappellaz, J., Delmas, R. J., and Lorius, C.: 1993, ‘The Ice Record of Greenhouse Gases’, Nature 259, 926-934.Google Scholar
  81. Rind, D., Peteet, D., Broecker, W. S., McIntyre, A., and Ruddiman, W.: 1986, ‘The Impact of Cold North Atlantic Sea Surface Temperatures on Climate: Implications for the Younger Dryas Cooling (11-10k) 1986’, Clim. Dynam. 1, 3-33.Google Scholar
  82. Sarmiento, J. L. and Sundquist, E. T.: 1992, ‘Revised Budget for the Oceanic Uptake of Anthropogenic Carbon Dioxide’, Nature 356, 589-593.Google Scholar
  83. Sarmiento, J. L, Orr, J. C., and Siegenthaler, U.: 1992, ‘A Perturbation Simulation of CO2 Uptake in an Ocean General Circulation Model’, J. Geophys. Res. 97, 3621-3645.Google Scholar
  84. Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., and Townsend, A. R.: 1994, ‘Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils’, Glob. Biogeochem. Cycles 8, 279-293.Google Scholar
  85. Schimel, D. S., Enting, I. G., Heimann, M., Wigley, T. M. L., Raynaud, D., Alves, D., and Siegenthaler, U.: 1995, ‘CO2 and the Carbon Cycle’, in Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, Hoesung, Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.), Clim. Change 1994, Cambridge University Press, Cambridge, pp. 35-71.Google Scholar
  86. Schindler, D. W. and Bayley, S. E.: 1993, ‘The Biosphere As an Increasing Sink for Atmospheric Carbon: Estimates from Increased Nitrogen Deposition’, Glob. Biogeochem. Cycles 7, 717-725.Google Scholar
  87. Shvidenko, A. and Nilsson, S.: 1997, ‘Are the Russian Forests Disappearing?’, Unasylva 188, 57-64.Google Scholar
  88. Siegenthaler, U. and Oeschger, H.: 1987, ‘Biospheric CO2 Emissions During the Past 200 Years Reconstructed by Deconvolution of Ice Core Data’, Tellus 39B, 140-154.Google Scholar
  89. Solomon, A. M. and Cramer, W. P.: 1993, ‘Biospheric Implications of Global Environmental Change’, in Solomon, A. M. and Shugart, H. H. (eds.), Vegetation Dynamics and Global Change, Chapman and Hall, New York and London, pp. 25-52.Google Scholar
  90. Spencer, R.W., Christy, J. R., and Grody, N. C.: 1990, ‘Global Atmospheric Temperature Monitoring with Satellite Microwave Measurements: Method and Results 1979-1984’, J. Clim. 3, 1111-1128.Google Scholar
  91. Stager, J. C. and Mayewski, P. A.: 1997, ‘Abrupt Early to Mid-Holocene Climatic Transition Registered at the Equator and the Poles’, Science 276, 1834-1836.Google Scholar
  92. Sundquist, E. T.: 1993, ‘The Global Carbon Dioxide Budget’, Science 259, 934-941.Google Scholar
  93. Tans, P. P., Fung, I. Y., and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric CO2 Budget’, Science 247, 1431-1438.Google Scholar
  94. Tans, P. P., Berry, J. A., and Keeling, R. F.: 1993, ‘13C/12C Observations: A New Window on Ocean CO2 Uptake’, Glob. Biogeochem. Cycles 7, 353-368.Google Scholar
  95. Tans, P. P., Fung, I. Y., and Enting, I. G.: 1995, ‘Storage Versus Flux Budgets: The Terrestrial Uptake of CO2 During the 1980s’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 351-366.Google Scholar
  96. Thompson, T. M. (ed.), Elkins, J. W., Butler, J. H., Montzka, S. A., Myers, R. C., Baring, T. J., Cummings, S. O., Dutton, G. S., Gilligan, J. M., Hayden, A. H., Lobert, J. M., Swanson, T. H., Hurst, D. F., and Volk, C. M.: 1994, ‘Nitrous Oxide and Halocarbon Division’, in Peterson, J. T. and Rosson, R. M. (eds.), Climate Monitoring and Diagnostics Laboratory. Number 22, Summary Report 1993. U.S. Department of Commerce/NOAA, Boulder, Colorado, pp. 72-91.Google Scholar
  97. Townsend, A. R., Vitousek, P. M., and Holland, E. A.: 1992, ‘Tropical Soils Could Dominate the Short-Term Carbon Cycle Feedbacks to Increased Global Temperatures’, Clim. Change 22, 293-303.Google Scholar
  98. Turner, D. P., Koerper, G. J., Harmon, M. E., and Lee, J. J.: 1995, ‘A Carbon Budget for Forests of the Conterminous United States’, Ecol. Appl. 5, 421-436.Google Scholar
  99. Van Campo, E., Guiot, J., and Peng, C.: 1993, ‘A Data-Based Re-Appraisal of the Terrestrial Carbon Budget at the Last Glacial Maximum’, Glob. Planet. Change 8, 189-201.Google Scholar
  100. Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: 1993, ‘Net Exchange of CO2 in a Mid-Latitude Forest’, Science 260, 1314-1317.Google Scholar
  101. Wollast, R. and Mackenzie, F. T.: 1989, ‘Global Biogeochemical Cycles and Climate’, in Berger, A., Schneider, S., and Duplessy. J.-Cl. (eds.), Climate and Geo-Sciences, Kluwer, Dordrecht, The Netherlands, pp. 453-510.Google Scholar
  102. Woodwell, G. M.: 1983, ‘Biotic Effects on the Concentration of Atmospheric Carbon Dioxide: A Review and Projection’, in National Research Council (ed.), Changing Climate: Report of the Carbon Dioxide Assessment Committee, National Academy Press, Washington, D.C., pp. 216–241.Google Scholar
  103. Woodwell, G. M.: 1989, ‘The Warming of the Industrialized Middle Latitudes 1985-2050: Causes and Consequences’, Clim. Change 15, 31-50.Google Scholar
  104. Woodwell, G. M.: 1990, ‘The Earth Under Stress: A Transition to Climatic Instability Raises Questions About Biotic Impoverishment’, i n Woodwell, G. M. (ed.), The Earth in Transition: Patterns and Processes of Biotic Impoverishment, Cambridge University Press, New York, pp. 3-7.Google Scholar
  105. Woodwell, G. M.: 1995, ‘Biotic Feedbacks from the Warming of the Earth’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 3-21.Google Scholar
  106. Woodwell, G. M. and Mackenzie, F. T. (eds.): 1995, Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York.Google Scholar
  107. Woodwell, G. M. and Whittaker, R. H.: 1968, ‘Primary Production in Terrestrial Ecosystems’, Amer. Zool. 8, 19-30.Google Scholar
  108. Woodwell, G. M., Mackenzie, F. T., Houghton, R. A., Apps, M. J., Gorham, E., and Davidson, E. A.: 1995, ‘Will the Warming Speed the Warming?’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 393-411.Google Scholar
  109. Wullschleger, S. D., Post, W. M., and King, A. W.: 1995, ‘On the Potential for a CO2 Fertilization Effect in Forests: Estimates of the Biotic Growth Factor, Based on 58 Controlled-Exposure Studies’, in Woodwell, G. M. and Mackenzie, F. T. (eds.), Biotic Feedbacks in the Global Climatic System. Will the Warming Feed the Warming?, Oxford University Press, New York, pp. 85-107.Google Scholar
  110. Zoltai, S. C.: 1993, ‘Cyclic Development of Permafrost in the Peatlands of Northwestern Alberta, Canada’, Arctic Alpine Res. 25, 240-246.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • G. M. Woodwell
    • 1
  • F. T. Mackenzie
    • 2
  • R. A. Houghton
    • 1
  • M. Apps
    • 3
  • E. Gorham
    • 4
  • E. Davidson
    • 1
  1. 1.The Woods Hole Research CenterWoods HoleU.S.A
  2. 2.Department of OceanographyUniversity of HawaiiHonoluluU.S.A
  3. 3.Northern Foresty CenterEdmontonCanada
  4. 4.100 Ecology Building, University of MinnesotaSt. PaulU.S.A

Personalised recommendations