Biotechnology Letters

, Volume 20, Issue 8, pp 757–761 | Cite as

Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus

  • Sukhoon Koh Koh
  • Hyun-Jae Shin
  • Joong Su Kim
  • Dae-Sil Lee
  • Se Young Lee
Article

Abstract

Purified trehalose synthase from Thermus caldophilus GK24 produced 18–86% trehalose from 10 mM–1 M maltose. The enzyme also catalyzed the conversion of α,α-trehalose into maltose but did not act on other disaccharides. The yield of trehalose from maltose by this enzyme increased 30% more at 40°C than at 80°C and was independent of the substrate concentration. The maximum yield of α,α-trehalose from 10 mM maltose reached 86% at 40°C. In addition, α,β-trehalose was also formed from maltose or α,α-trehalose at 3.5% yield at 80°C. © Rapid Science Ltd. 1998

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birch, GG (1963) Adv. Carbohydr. Chem. Biochem. 18: 201–225.Google Scholar
  2. Elbein, AD (1974) Adv. Carbohydr. Chem. Biochem. 30: 227–256.Google Scholar
  3. Kato, M, Miura, Y, Kettoku, M, Shindo, Kettoku, M, Shindo, K, Iwamatsu, A and Kobayashi, K (1996) Biosci. Biotech. Biochem. 60: 546–550.Google Scholar
  4. Kizawa, H, Miyazaki, J, Yokota, A, Kanegae, Y, Miyagawa, K, Sugiyama, Y (1995) Biosci. Biotech. Biochem. 59: 1522–1527.Google Scholar
  5. Ko, JH, Kim, CH, Lee, DS and Kim, YS (1996) Biochem. J. 319: 977–983.Google Scholar
  6. Lama, L, Nicolaus, B, Trincone, A, Morzillo, P, De Rosa, M and Gambacorta, A (1990) Biotech. Lett. 12: 431–432.Google Scholar
  7. Maruta, K, Nakada, T, Kubota, M, Chaen, H, Sugimoto, T, Kurimoto, M and Tsujisaka Y (1995) Biosci. Biotech. Biochem. 59: 1829–1834.Google Scholar
  8. Nakada, T, Maruta, K, Tsusaki, K, Kubota, M, Chaen, H, Sugimoto, T, Kurimoto, M and Tsujisaka, Y (1995) Biosci. Biotech. Biochem. 59: 2210–2214.Google Scholar
  9. Nishimoto, T, Nakano, M, Ikegami, S, Chaen, H, Fukuda, S, Sugimoto, T, Kurimoto, M and Tsujisaka, Y (1995) Biosci. Biotech. Biochem. 59: 2189–2190.Google Scholar
  10. Nishimoto, T, Nakano, M, Nakada, T, Chaen, H, Fukuda, Shigeharu, Sugimoto, T, Kurimoto, M and Tsujisaka, Y (1996) Biosci. Biotech. Biochem. 60: 640–644.Google Scholar
  11. Ohguchi, M, Kubota, N, Wada, T, Yoshinaga, K, Uritani, M, Yagisawa, M, Ohishi, K, Yamagishi, M, Ohta, T and Ishikawa, K (1997) J. Ferment. Bioeng. 84: 358–360.Google Scholar
  12. Park, JH, Kim, JS, Kwon, ST and Lee, DS (1993) Eur. J. Biochem. 214: 135–140.Google Scholar
  13. Schick, I, Fleckenstein, J, Weber, H and Kulbe KD (1991) Biochem. Eng. Stuttgart 126–129.Google Scholar
  14. Yoshida, M, Nakamura, N and Horikosh, K (1995) Oyo Toshitsu Kagaku 42: 19–25.Google Scholar

Copyright information

© Chapman & Hall 1998

Authors and Affiliations

  • Sukhoon Koh Koh
    • 1
  • Hyun-Jae Shin
    • 1
  • Joong Su Kim
    • 1
  • Dae-Sil Lee
    • 1
  • Se Young Lee
    • 2
  1. 1.Molecular Glycobiology Research UnitKorea Research Institute of Bioscience and BiotechnologyYusong TaejonKorea
  2. 2.Graduate School of BiotechnologyKorea UniversityAnam-dong, Sungbook-gu SeoulKorea

Personalised recommendations