Advertisement

Climatic Change

, Volume 37, Issue 4, pp 665–681 | Cite as

On the Urban Heat Island Effect Dependence on Temperature Trends

  • Inés Camilloni
  • Vicente Barros
Article

Abstract

For U.S., Argentine and Australian cities, yearly mean urban to rural temperature differences (ΔTu-r) and rural temperatures (Tr) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901–1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity.

Keywords

Interannual Variability Temperature Trend Global Temperature Urban Growth Global Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, B.: 1985, ‘Temporal March of the Chicago Heat Island’, J. Clim. Appl. Meteorol. 24, 547–554.Google Scholar
  2. Balling, R. C. and Idso, S. B.: 1989, ‘Historical Temperature Trends in the United Sates and the Effect of Urban Population Growth’, J. Geophys. Res. 94, 3359–3363.Google Scholar
  3. Barros, V. and Camilloni, I.: 1994, ‘Urban Biased Trends in Buenos Aires' Mean Temperature’, Clim. Res. 4, 33–45.Google Scholar
  4. Camilloni, I. and Barros, V.: 1995, ‘Influencia de la Isla Urbana de Calor en la Estimación de las Tendencias Seculares de la Temperatura en Argentina Subtropical’, Geofisica Internacional 34, 161–170.Google Scholar
  5. Chandler, T. J.: 1962, ‘London's Urban Climate’, Geogr. J. 127, 279–302.Google Scholar
  6. Chandler, T. J.: 1965, The Climate of London, Hutchinson & Co., London, p. 292.Google Scholar
  7. Colacino, M. and Rovelli, A.: 1983, ‘The Yearly Averaged Air Temperature in Rome from 1782 to 1975’, Tellus 35A, 389–397.Google Scholar
  8. Coughlan, M., Tapp, R., and Kininmonth, W.: 1989, ‘Trends in Australian Temperature Records’, in Observed Climate Variations and Change: Contributions in Support of Section 7 of the 1990 IPCC Scientific Assessment, Intergovernmental Panel on Climate Change, pp. 1–28.Google Scholar
  9. Godowitch, J. M., Ching, J. K. S., and Clarke, J. F.: 1985, ‘Evolution of the Nocturnal Inversion Layer at an Urban and Nonurban Location’, J. Clim. Appl. Meteorol. 24, 791–804.Google Scholar
  10. Hansen, J. and Lebedeff, S.: 1987, ‘Global Trends of Measured Surface Air Temperature’, J. Geophys. Res. 92, 13345–13372.Google Scholar
  11. Holzworth, G.: 1974, Climatological Aspects of the Composition and Pollution of the Atmosphere, WMO Tech. Note No. 139, p. 43.Google Scholar
  12. Jones, P. D.: 1985, ‘Southern Hemisphere Temperatures’, Climate Monitor 14, 132–140.Google Scholar
  13. Jones, P. D.: 1988, ‘Hemispheric Surface Air Temperature Variations: Recent Trends and an Update to 1987’, J. Clim. 1, 654–660.Google Scholar
  14. Jones, P. D., Raper, S. C., and Wigley, T. M.: 1986a, ‘Southern Hemisphere Surface Air Temperature Variations: 1851–1984’, J. Clim. Appl. Meteorol. 25, 1215–1230.Google Scholar
  15. Jones, P. D., Wigley, T. M., and Wright, P. B.: 1986b, ‘Global Temperature Variations 1861–1984’, Nature 322, 430–434.Google Scholar
  16. Jones, P. D., Kelly, P. M., Goodess, C. M., and Karl, T. R.: 1989, ‘The Effect of Urban Warming on the Northern Hemisphere Temperature Average’, J. Clim. 2, 285–290.Google Scholar
  17. Jones, P. D., Raper, S. C., Bradley, R. S., Diaz, H. F., Kelly, P. M., and Wigley, T. M.: 1986c, ‘Northern Hemisphere Surface Air Temperature Variations: 1851–1984’, J. Clim. Appl. Meteorol. 25, 161–179.Google Scholar
  18. Jones, P. D., Groisman, P. Ya., Coughlan, M., Plummer, N., Wang, W. C., and Karl, T. R.: 1990, ‘Assessment of Urbanization Effects in Time Series of Surface Air Temperature over Land’, Nature 347, 169–172.Google Scholar
  19. Jones, P. D., Raper, S. C. B., Cherry, B. S. G., Goodess, C.M., Wigley, T. M. L., Santer, B., Kelly, P. M., Bradley, R. S., and Diaz, H. F.: 1991, An Updated Global Grid Point Surface Air Temperature Anomaly Data Set: 1851–1990, Environmental Sciences Division, Publication No. 3520, p. 251.Google Scholar
  20. Karl, T. R. and Jones, P. D.: 1989, ‘Urban Bias in Area-Averaged Surface Air Temperature Trends’, Bull. Amer. Meteorol. Soc. 70, 265–270.Google Scholar
  21. Karl, T. R., Baldwin, R. G., and Burgin, M. G.: 1988a, ‘Time Series of Regional Averages of Maximum, Minimum and Average Temperature and Diurnal Temperature Range Across the United States: 1901–1984’, in Hist. Climatol. Ser. 4–5, Ashville, National Climatic Data Center.Google Scholar
  22. Karl, T. R., Diaz, H. F., and Kukla, G.: 1988b. ‘Urbanization: Its Detection and Effect in the United States Climate Record’, J. Clim. 1, 1099–1123.Google Scholar
  23. Kukla, G., Gavin, J., and Karl, T.R.: 1986, ‘Urban Warming’, J. Clim. Appl. Meteorol. 25, 1265–1270.Google Scholar
  24. Lee, D. O.: 1975, ‘Rural Atmospheric Stability and the Intensity of London's Heat Island’, Weather 30, 102–109.Google Scholar
  25. Lowry, W. P.: 1977, ‘Empirical Estimation of Urban Effects on Climate: A Problem Analysis’, J. Appl. Meteorol. 16, 124–135.Google Scholar
  26. Mazzeo, N. A. and Gassmann, M. I.: 1990, ‘Mixing Heights and Wind Direction Analysis for Urban and Suburban Areas of Buenos Aires City’, Energy Buildings 15–16, 333–337.Google Scholar
  27. Mitchell, J. M.: 1961, ‘The Temperature of Cities’, Weatherwise 14, 224–229.Google Scholar
  28. Moreno García, M. C.: 1994, ‘Intensity and Form of the Urban Heat Island in Barcelona’, Int. J. Clim. 14, 705–710.Google Scholar
  29. Oke, T. R.: 1973, ‘City Size and the Urban Heat Island’, Atmos. Environ. 7, 769–779.Google Scholar
  30. Oke, T. R.: 1979, Review of Urban Climatology, WMO Tech. Note No. 169, p. 100.Google Scholar
  31. Oke, T. R.: 1982, ‘The Energetic Basis of the Urban Heat Island’, Quart. J. Roy. Meteorol. Soc. 108, 1–24.Google Scholar
  32. Quinlan, F. T., Karl, T. R., and Williams, C. N. Jr.: 1987, ‘United States Historical Climatology Network (HCN) Serial Temperature and Precipitation Data, NDP-019’, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., p. 33.Google Scholar
  33. Scian, B. V. and Quinteros, S. R.: 1975, ‘Capa de Mezcla en la Ciudad de Buenos Aires’, Meteorológica 6–7, 145–156.Google Scholar
  34. Vinnikov, K. Ya., Groisman, P. Ya., and Lugina, K. M.: 1990, ‘The Empirical Data on Modern Global Climate Changes (Temperature and Precipitation)’, J. Clim. 3, 662–677.Google Scholar
  35. Wigley, T. M. and Jones, P. D.: 1988, ‘Do Large-Area Average Temperature Series Have an Urban Warming Bias?’ (Response to the Manuscript by F. B. Wood), Clim. Change 12, 313–319.Google Scholar
  36. Wood, F. B.: 1988, ‘Comment: On the Need for Validation of the Jones et al. Temperature Trends with Respect to Urban Warming’, Clim. Change 12, 297–312.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Inés Camilloni
    • 1
  • Vicente Barros
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations