Climatic Change

, Volume 40, Issue 1, pp 39–80

Mitigating Agricultural Emissions of Methane

  • A.R. Mosier
  • J.M. Duxbury
  • J.R. Freney
  • O. Heinemeyer
  • K. Minami
  • D.E. Johnson
Article

Abstract

Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.

Methane emissions mitigation agriculture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamsen, A.P.S., and King G.M.: 1993, ‘Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation, and responses to water and nitrogen’, Appl. Environ. Microbiol. 59, 485–490.Google Scholar
  2. Andreae, M.O.: 1991, ‘Biomass burning. Its history, use, and distribution and its impact on environmental quality and global climate’, in Levine, J.S. (ed.). Global Biomass Burning: Atmospheric, Climate, and Biospheric Implications, MIT Press, Cambridge, Massachusetts, pp. 3–21.Google Scholar
  3. Andreae, M.O., and Schimel, D.S.: 1989, Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, John Wiley & Sons, Chichester.Google Scholar
  4. Andrasko, K.J., Ahuja, D.R., Winnett, S.M., and Tirpak, D.A.: 1991, ‘Policy options for managing biomass burning to mitigate global climate change’, in Levine, J.S. (ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, Massachusetts, pp. 445–456.Google Scholar
  5. Aselmann, I., and Crutzen, P.J.: 1989, ‘The global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emission’, J. Atm. Chem. 8, 307–358.Google Scholar
  6. Baldwin, R.L., Thornley, J.M., and Beever, D.E.: 1987a, ‘Metabolism of the lactating cow. 11. Digestive elements of a mechanistic model’, J. Dairy Res. 54, 107–131.Google Scholar
  7. Baldwin, R.L., France, J., Beever, D.E., Gill, M., and Thornley, J.M.: 1987b, ‘Metabolism of the lactating cow. III Properties of mechanistic models suitable for evaluation of energetic relationships and factors involved in the partition of nutrients’, J. Dairy Res. 54, 133–145.Google Scholar
  8. Banerjee, N.K., and Mosier, A.R.: 1989, ‘Coated calcium carbide as a nitrification inhibitor in upland and flooded soils’, J. Indian Soc. Soil Sci. 37, 306–313.Google Scholar
  9. Bender, M., and Conrad, R.: 1993, ‘Kinetics of methane oxidation in oxic soils’, Chemosphere 26, 687–696.CrossRefGoogle Scholar
  10. Bingemer, H.G., and Crutzen, P.J.: 1987, ‘The production of methane from solid wastes’, J. Geophys. Res. 92(D), 2181–2187.Google Scholar
  11. Blake, D.R., and Rowland, F.S.: 1988, ‘Continuing worldwide increase in tropospheric methane, 1978 to 1987’, Science 239, 1129–1131.Google Scholar
  12. Blaxter, K.L., and Clapperton, J.L.: 1965, ‘Prediction of the amount of methane produced by ruminants’, Brit. J. Nutr. 19, 511.Google Scholar
  13. Blake, D.R.: 1984, ‘Increasing concentrations of atmospheric methane’, PhD. dissertation, University of California at Irvine, 213 pp.Google Scholar
  14. Born, M., Dorr, H., and Levin, I.: 1990, ‘Methane consumption in aerated soils of the temperate zone’, Tellus 42B, 2–8.CrossRefGoogle Scholar
  15. Bouwman, A.F.: 1990, ‘Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere’, in Bouwman, A.F. (ed.), Soils and the Greenhouse Effect, John Wiley & Sons, New York, pp. 61–127.Google Scholar
  16. Branine, M.E., and Johnson, D.E.: 1990, ‘Level of intake effects on ruminant methane loss across a wide range of diets’, J. Animal Sci. 68(Suppl. 1), 509–510.Google Scholar
  17. Bremner, J.M., and Blackmer, A.M.: 1982, ‘Composition of soil atmospheres’, in Cicerone, R.J., Shetter, J.D. and Delwiche, C.C. (eds.), Methods of soil analysis, Part 2, Chemical and Microbiological Properties, Agronomy Monograph No. 9, pp. 873–901.Google Scholar
  18. Bronson, K.F., and Mosier, A.R.: 1991, ‘Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane and carbon dioxide emissions from flooded rice’, Biol. Fertil. Soils 11, 116–120.CrossRefGoogle Scholar
  19. Bronson, K.F., and Mosier, A.R.: 1993, ‘Nitrous oxide emissions and methane consumption in wheat and corn-cropped systems’, in Harper, L.A., Mosier, A.R., Duxbury, J.M. and Rolston, D.E. (eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Pub. No. 55, Am. Soc. Agron., Madison, WI, pp. 133–144.Google Scholar
  20. CAST: 1992, ‘Preparing U.S. Agriculture for Global Climate Change’, Task Force Report. No. 119, (P.E. Waggoner, Chair), Council for Agricultural Science and Technology, Ames, IA, 96 p.Google Scholar
  21. Cicerone, R.J., and Shetter, J.D.: 1981, ‘Sources of atmospheric methane: measurements in rice paddies and a discussion’, J. Geophys. Res. 86, 7203–7209.Google Scholar
  22. Cicerone, R.J., Shetter, J.D., and Delwiche, C.C.: 1983, ‘Seasonal variation of methane flux from a California rice paddy’, J. Geophys. Res. 88, 7203–7209.Google Scholar
  23. Cicerone, R.J., and Oremland, R.S.: 1988, ‘Biogeochemical aspects of atmospheric methane’, Global Biogeochem. Cycles 2, 299–327.Google Scholar
  24. Cochran, V.L., Sclentner, S.F., and Mosier, A.R.: 1995, ‘CH4 and N2O flux in subarctic agricultural soils’, Adv. in Soil Sci., CRC Press, Boca Raton FL, pp. 179–186.Google Scholar
  25. Conrad, R.: 1989, ‘Control of methane production in terrestrial ecosystems’, in Andreae, M.O. and Schimel, D.S. (eds.), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, John Wiley & Sons, Chichester, pp. 39–58.Google Scholar
  26. Crill, P.M.: 1991, ‘Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil’, Global Biogeochem. Cycles 4, 319–334.Google Scholar
  27. Crutzen, P.J., and Andreae, M.O.: 1990, ‘Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles’, Science 250, 1669–1678.Google Scholar
  28. Crutzen, P.J., Aselmann, I., and Seiler, W.: 1986, ‘Methane production by domestic animals, wild ruminants, other herbiverous fauna, and humans.’, Tellus 38B, 271–284.Google Scholar
  29. Delmas, R.: 1993, ‘An overview of present knowledge of methane emission from biomass burning’, in van Amstel, A.R. (ed.), Methane and Nitrous Oxide, pp. 81–91, RIVM report no 481507003. National Institute of Public Health and Environmental Protection, Bilthoven, the Netherlands.Google Scholar
  30. Dorr, H., Katruff, L., and Levin, I.: 1993, ‘Soil texture parameterization of the methane uptake in aerated soils’ Chemosphere 26, 697–713.CrossRefGoogle Scholar
  31. Dunfield, P., Knowles, R., Dumont, R., and Moore, T.R.: 1993, ‘Methane production and consumption in temperate and subarctic peat soils: Respose to temperature and pH’, Soil. Biol. Biochem. 25, 321–326.CrossRefGoogle Scholar
  32. Ehhalt, D.H., and Schmidt, U.: 1978, ‘Sources and sinks of atmospheric methane’, Pure Appl. Geophys. 116, 452–464.Google Scholar
  33. FAO: 1990, Production Yearbook, Volume 43, FAO statistics series no. 94., FAO, Rome.Google Scholar
  34. Fung I.J., Lerner, J.J., Matthews, E., Prather, M., Steele, L.P., and Fraser, P.J.: 1991, ‘Three dimensional model synthesis of the global methane cycle’, J. Geophys. Res. 96, 13033–13065.Google Scholar
  35. Gadeken, D., Rath, D., and Sauerbeck, D.: 1990, ‘Methane production in ruminants’, in Greenhouse Gas Emissions from Agricultural Ecosystems, Vol 1, USEPA report 20P-2005, Office of Policy Analysis, Washington, DC., pp. V 36–38.Google Scholar
  36. Galbally, I.E.: 1992, Proceedings of IGBP Workshop No. 14. Canberra, Oct. 3–5. 1990Google Scholar
  37. Gibbs, M.J., and Leng, R.A.: 1993, ‘Methane emissions from livestock’, in van Amstel, A.R. (ed.), ‘Methane and Nitrous Oxide’, RIVM report no. 481507003, National Institute of Public Health and Environmental Protection, Bilthoven, the Netherlands, pp. 73–79.Google Scholar
  38. Hansen, S., Maehlum, J.E., and Bakken, L.R.: 1993, ‘N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic’, Soil Biol. Biochem. 5, 621–630.CrossRefGoogle Scholar
  39. Hao, W.M., Scharffe, D., and Crutzen, P.J.: 1988, ‘Production of N20, CH4 and CO2 from soils in the tropical savanna during the dry season’, J. Atmos Chem. 7, 93–105.Google Scholar
  40. Harper, L.A., Denmead, O.T., Freney, J.R., and Byers, F.M.: Micrometerological determination of methane emissions from grazing and feedlot cattle. (Unpublished).Google Scholar
  41. Hogan, K.B.: 1993, ‘Methane reductions are a cost-effective approach for reducing emissions of greenhouse gases’ in van Amstel, A.R. (ed.), ‘Methane and Nitrous Oxide: Methods in National Emissions Inventories and Options for Control’, RIVM Report No. 481507003. Bilthoven, the Netherlands, pp. 187–201.Google Scholar
  42. Holzapfel-Pschorn, A., and Seiler, W.: 1986, ‘Methane emission during a cultivation period from an Italian rice paddy’, J. Geophys. Res. 91, 11803–11814.Google Scholar
  43. Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.): 1992, ‘Climate Change 1992’, The Supplementary Report to the IPCC Scientific Assessment, Intergovernmental Panel on Climate Change, Cambridge Univ. Press, 200 pp.Google Scholar
  44. Huetsch, B.W., Webster, C.P., and Powlson, D.S.: 1993, ‘Long-term effects of nitrogen fertilization on methane oxidation in soil of the broadbalk wheat experiment’, Soil Biol. Biochem. 25, 1307–1315.CrossRefGoogle Scholar
  45. Huyler, M.T., Johnson, K.A., Westerberg, H.H., Lamb, B.K., and Zimmerman, P.: 1993, ‘A method for quantifying ruminant methane emissions from free-ranging ruminants’, J. Animal Sci. Suppl. 1, 269.Google Scholar
  46. IPCC: 1994, ‘Radiative Porcing of Climate Change’, The 1994 Report of the Scientific Assessment Working Group of IPCC, Summary for Policymakers. WMO/UNEP, Geneva, 28 pp.Google Scholar
  47. Johnson, D.E., Hill, T.M., Ward, G.M., Johnson, K.A., Branine, M.E., Carmean, B.R., and Lodman, D.W.: 1993, ‘Ruminants and other animals’, in Khalil, M.A.K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change, Springer-Verlag, N.Y., pp. 199–229.Google Scholar
  48. Keerthisinghe, D.G., Freney, J.R., and Mosier, A.R.: 1993, ‘Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice’, Biol. Fertil. Soils 16, 71–75.CrossRefGoogle Scholar
  49. Keller, M., Mitre, M.E., and Stallard, R.F.: 1990, ‘Consumption of atmospheric methane in soils of central Panama: Effects of agricultural development’, Global Biogeochem. Cycles 4, 21–27.Google Scholar
  50. Keller, M., Veldkamp, E., Weltz, A.M., and Reiners, W.A.: 1993, ‘Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica’, Nature 365, 244–246.CrossRefGoogle Scholar
  51. Khalil, M.A.K.: 1993, ‘Working Group Report. Methane Emissions from Rice Fields’, in van Amstel, A. (ed.), ‘Methane and Nitrous Oxide: methods in national emissions inventories and options for control’, Proceedings, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, pp. 239–244Google Scholar
  52. Khalil, M.A.K., and Rasmussen, R.J.: 1983, ‘Sources, sinks and seasonal cycles of atmospheric methane’, J. Geophys. Res. 88, 5131–5144.Google Scholar
  53. King, G.M., and Adamsen, A.P.S.: 1992, ‘Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas ruba’, Appl. Environ. Microbiol. 58, 2758–2763.Google Scholar
  54. Knowles, R.: 1993, ‘Methane: Processes of Production and Consumption’, in Harper, L.A., Mosier, A.R., Duxbury, J.M. and Rolston, D.E. (eds.), Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Pub. No. 55, Am. Soc. Agron. Madison WI, pp. 145–156.Google Scholar
  55. Lauren, J.G., and Duxbury, J.M.: 1993, ‘Methane emissions from flooded rice amended with green manure’, in Harper, L.A., Mosier, A.R., Duxbury, J.M. and Rolston, D.E. (eds.), Agroecosystem Effects on Radiatively Important Trace Gases and Global Climate Change, ASA Special Publication No. 55, Am. Soc. Agron. Madison, WI, pp. 183–192.Google Scholar
  56. Lauren, G., Pettygrove, G.S., and Duxbury, J.M.: 1994, ‘Methane emissions associated with a green manure amendment to flooded rice in California’, Biogoechem. 24, 53–65.Google Scholar
  57. Leng, R.A.: 1991, ‘Improving ruminant production and reducing methane emissions from ruminants by strategic supplementation’, USEPA report 400/1-91/004, Office of Air and Radiation, Washington, DC.Google Scholar
  58. Levine, J.S., Cofer, W.R., and Pinto, J.P.: 1993, ‘Biomass Burning’, in Khalil, M.A.K. (ed.), Atmospheric Methane: Sources, Sinks and Role in Global Change, Springer-Verlag, Berlin, Heidelberg, pp. 230–253.Google Scholar
  59. Lin, E., Dong, H., and Li, Y.: 1994, ‘Methane emissions of China: Agricultural sources and mitigation options’, in Agricultural Sources and Mitigation Options. Proceedings of the Symposium on Non-CO2 Greenhouse Gases, Kluwer Academic Publishers.Google Scholar
  60. Lindau, C.W., Bollich, P.K., DeLaune, R.D., Mosier, A.R., and Bronson, K.F.: 1993b, ‘Methane mitigation in flooded Louisiana rice fields’, Biol. Fertil. Soils 15, 174–178.Google Scholar
  61. Minami, K.: 1993, ‘Methane from rice production’, in van Amstel, A.R. (ed.), Methane and Nitrous Oxide, Proceedings IPCC Workshop, Bilthoven, the Netherlands, pp. 143–162.Google Scholar
  62. Minami, K.: 1995, ‘The effect of nitrogen fertilizer use and other practices in methane emission from flooded rice’, Fertilizer Research 40, 71–85.Google Scholar
  63. Minami, K., Mosier, A., and Sass, R. (eds.): 1994, ‘CH4 and N2O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources’, NIAES Series 2, YOKENDO Publishers, Tokyo, 234 p.Google Scholar
  64. Moe, P.W., and Tyrell, H.F.: 1979, ‘Methane production in dairy cows’ J. Dairy Sci. 62, 1583–1586.Google Scholar
  65. Mosier, A.R., Schimel, D.S., Valentine, D., Bronson, K.F., and Parton, W.J.: 1991, ‘Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands’. Nature 350, 330–332.CrossRefGoogle Scholar
  66. Nesbit, S.P., and Breitenbeck, G.A.: 1992, ‘A laboratory study of factors influencing methane uptake by soils’, Agric. Ecosystems Environ. 41, 39–54.CrossRefGoogle Scholar
  67. Neue, H.U.: 1992, ‘Agronomic practices affecting methane fluxes from rice cultivation’, in Ojima, D.S. and Svensson, B.H. (eds.), Trace Gas Exchange in a Global Perspective, Ecol. Bull. (Copenhagen). 42, 174–182.Google Scholar
  68. Neue, H.U., Becker-Heidmann, P., and Scharpenseel, H.W.: 1990, ‘Organic matter dynamics, soil properties and cultural practices in ricelands and their relationship to methane production’, in Bouwman, A.F. (ed.), Soils and the Greenhouse Effect, John Wiley & Sons, Chichester, England, pp. 457–466.Google Scholar
  69. Neue, H.U., Lantin, R.S., Wassmann, R., Aduna, J.B., Alberto, M.C.R., and Andales, M.J.F.: 1994, ‘Methane emission from rice soils of the Philippines’, in Minami, K., Mosier, A. and Sass, R. (eds.), CH4 and N2 O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, NIAES, Yokendo Publishers, Tokyo, pp. 55–63.Google Scholar
  70. Nouchi, I., Mariko, S., and Aoki, K.: 1990, ‘Mechanisms of methane transport from the rhizosphere to the atmosphere through rice plant’, Plant Physiol. 94, 59–66.Google Scholar
  71. Nouchi, I., Hosono, T., Aoki, K., and Minami, K.: 1994, ‘Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modeling’, Plant and Soil 161, 195–208.Google Scholar
  72. Ojima, D.S., Valentine, D.W., Mosier, A.R., Parton, W.J., and Schimel, D.S.: 1993, ‘Effect of land use change on methane oxidation in temperate forest and grassland soils’ Chemosphere 26, 675–685.CrossRefGoogle Scholar
  73. Parashar, D.C., Mitra, A.P., Sinha, S.K., Gupta, P.K., Rai, J., Sharma, R.C., Singh, N., Kaul, S., Lai, G., Chaudhary, A., Ray, H.S., Das, S.N., Parida, K.M., Rao, S.B., Kanungo, S.P., Ramasai, T., Nair, B.U., Swamy, M., Singh, G., Gupta, S.K., Singh, A.R., Saikia, B.K., Barua, A.K.S., Pathak, M.G., Iyer, C.P.S., Gopalakrishnan, M., Sanc, P.V., Singh, S.N., Banerjee, R., Sethunathan, N., Adhya, T.K., Rao, V.R., Palit, P., Saha, A.K., Purkait, N.N., Chaturvedi, G.S., Sen, S.P., Sen, M., Ark/rkar, B., Banik, A., Subbarary, B.H., Lal, S., and Venkatramani, S.: 1994, ‘Methane budget from Indian paddy fields’, in Minami, K., Mosier, A. and Sass, R. (eds.), CH4 and N2 O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, NIAES, Yokendo Publishers, Tokyo, pp. 27–39.Google Scholar
  74. Patrick, W.H. Jr.: 1981, ‘The role of inorganic redox systems in controlling reduction in paddy soils’, in Proceedings Symp. Paddy Soil, Science Press, Beijing, Springer-Verlag, pp. 107–117.Google Scholar
  75. Reeburgh, W.S., Whalen, S.C., and Alpern, M.J.: 1993, ‘The role of methylotrophy in the global methane budget’, in Microbial Growth on C1 Compounds. pp. 1–14.Google Scholar
  76. Rodhe, H.: 1990, ‘A comparison of the contribution of various gases to the greenhouse effect’, Science (Washington) 248, 1217–1219.Google Scholar
  77. Rudolph, J.: 1994, ‘Anomalous methane’, Nature 368, 19–20.CrossRefGoogle Scholar
  78. Safley, L.M., Casada, M.E., Woodbury, I.W., and Roos, K.F.: 1992, ‘Global methane emissions from livestock and poultry manure’, USEPA report 400/1-91/048, Office of Air and Radiation, Washington, DC.Google Scholar
  79. Sass, R.L.: 1994, ‘Short summary chapter for methane’, in Minami, K., Mosier, A. and Sass, R. (eds.), CH4 and N2 O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, NIAES, Yokendo Publishers, Tokyo, pp. 1–7.Google Scholar
  80. Sass, R.L., Fisher, F.M., Turner, F.T., and Jund, M.F.: 1991, ‘Methane emissions from rice fields as influenced by solar radiation, temperature, and straw incorporation’, Global Biogeochem. Cycles 5, 335–350.Google Scholar
  81. Sass, R.L., Fisher, F.M., Wang, Y.B., Turner, F.T., and Jund, M.F.: 1992, ‘Methane emission from rice fields: the effect of floodwater management’, Global Biogeochem. Cycles 6, 249–262.Google Scholar
  82. Schnell, S., and King, G.M.: 1994, ‘Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils’, Appl. Environ. Microbiol. 60, 3514–3521.Google Scholar
  83. Schutz, H., Holzapfel-Pschron, A., Conrad, R., Rennenberg, H., and Seiler, W.: 1989, ‘A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy’, J. Geophys. Res. 94, 16405–16416.Google Scholar
  84. Schutz, H., Seiler, W., and Rennenberg, H.: 1990, ‘Soil and land use related sources and sinks of methane in the context of the global methane budget’, in Bouwman, A.F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons, Chichester, pp. 269–301.Google Scholar
  85. Seiler, W., Conrad, R., and Scharffe, D.: 1984, ‘Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils’, J. Atmos. Chem. 1, 171–186.Google Scholar
  86. Seiler, W., and Conrad, R.: 1987, ‘Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N2O’, in Dickinson, R.E. (ed.), Geophysiology of Amazonia, Vegetation and Climate Interactions, John Wiley and Sons, New York, pp. 133–160.Google Scholar
  87. Shearer, M.J., and Khalil, M.A.K.: 1993, ‘Rice agriculture: Emissions’, in Khalil, M.A.K. Khalil (ed.), Atmospheric Methane: Sources, Sinks and Role in Global Change, Springer-Verlag, Berlin, Heidelberg, pp. 230–253.Google Scholar
  88. Shibata, M.: 1994, ‘Methane production in ruminants’, in Minami, K., Mosier, A. and Sass, R. (eds.), CH4 and N2 O: Global Emissions and Controls from Rice Fields and Other Agaricultural and Industrial Sources, NIAES, Yokendo Publishers, Tokyo, pp. 105–115.Google Scholar
  89. Shibata, M., Terada, F., Kurihara, M., and Iwasaki, K.: 1993, ‘Estimation of methane peoduction in ruminants’, Animal Sci. Technol. 64, 790–795.Google Scholar
  90. Sommerfeld, R.A., Mosier, A.R., and Musselman, R.C.: 1993, ‘CO2, CH4 and N2O flux through a Wyoming snowpack and implicatons for global budgets’, Nature 361, 140–142.CrossRefGoogle Scholar
  91. Steudler, P.A., Bowden, R.D., Melillo, J.M., and Aber, J.D.: 1989, ‘Influence of nitrogen fertilization on methane uptake in temperate forest soils’, Nature 341, 314–316.CrossRefGoogle Scholar
  92. Striegl, R.G., McConnaughey, T.A., Thorstenson, D.C., Weeks, E.P., and Woodward, J.C.: 1992, ‘Consumption of atmospheric methane by desert soils’, Nature 357, 145–147.CrossRefGoogle Scholar
  93. Steele, L.P., Dlugokencky, E.J., Lang, P.M., Tans, P.P., Martin, R.C., and Masarie, K.A.: 1992, ‘Slowing down of the global accumulation of atmospheric methane during the 1980's’, Nature 358, 313–316.CrossRefGoogle Scholar
  94. Takai, Y.: 1970, ‘The mechanism of methane fermentation in flooded paddy soil’, Soil Sci. Plant Ntr. 16, 238–244.Google Scholar
  95. Takai, Y.: 1980, ‘Microbial study on the behavior of the paddy soils’, Fert. Sci. 3, 17–55 (in Japanese).Google Scholar
  96. Takai, Y., Koyama, T., and Kamura, T.: 1956, ‘Microbial metabolism in reduction process of paddy soils (Part 1)’, Soil & Plant Food 2, 63–66.Google Scholar
  97. USEPA: 1990, ‘Policy Options for Stabilizing Global Climate’, in Tirpak, D. And Lashof, D. (eds.), Draft Report to Congress, U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  98. USEPA: 1992, ‘Anthropogenic methane emissions in the US: estimates for 1990’, Report no. 430-R-93-003, USEPA, Office of Air and Radiation, Washington, DC.Google Scholar
  99. USEPA: 1993a, ‘Methane Emissions from Livestock Manure’, in Global Methane Emissions, Report to the Congress prepared by Climate Change Division, Office of Policy, Planning and Evaluation, EPA, Washington, D.C., January 1993, Review Draft.Google Scholar
  100. USEPA: 1993b, ‘Options for reducing methane internationally’ Vol. II: International Opportunities, USEPA 430R93-006B.Google Scholar
  101. USEPA: 1994, ‘International Anthropogenic Methane Emissions: Estimates for 1990’, Report no. 230-R-93-010, Report to Congress. USEPA Office of Policy, Planning and Evaluation.Google Scholar
  102. Wang, M., Aiguo, D., Renxing, S., Schutz, H., Seiler, W., Rennenberg, H., and Haibao, W.: 1990, ‘CH4 emission from a Chinese rice paddy field, ACTA Meterologica Sinica. Scienia Atmospherica sinca. 4, 265–274.Google Scholar
  103. Wang M., Aiguo, D., Xingjian, S., Lixin, R., Renxing, S., Schutz, H., Seiler, W., Ramussen, R.A., and Khalil, M.A.K.: 1994, ‘Sources of methane in China’, in Minami, K., Mosier, A. and Sass, R. (eds.), CH4 and N2 O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, NIAES, Yokendo Publishers, Tokyo, pp. 9–26.Google Scholar
  104. Watson, R.T., Rodhe, H., Oeschger, H., and Siegenthaler, U.: 1990, ‘Greenhouse gases and aerosols’, in Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. (eds.), Climate change, the IPCC Scientific Assessment, Cambridge Univ. Press, Cambridge, pp. 1–40.Google Scholar
  105. Watson, R.T., Meira Filho, L.G., Sanhueza, E., and Janetos, T.: 1992, ‘Greenhouse gases: Sources and Sinks’, in Houghton, J.T., Callander, B.A. and Varney, S.K. (eds.), Climate Change 1992, The Supplementary Reports to the IPCC Scientific Assessment, Cambridge Univ. Press, Cambridge, pp. 25–46.Google Scholar
  106. Whalen, S.C., Reeburgh, W.S., and Kizer, K.S.: 1991, ‘Methane consumption by tiaga’, Global Biogeochem. Cycles 5, 261–273.Google Scholar
  107. Willison, T.W., Webter, C.P., Goulding, K.W.T., and Powlson, D.S.: 1995, ‘Methane oxidation in temperate soils: Effects of land use and the chemical form of nitrogen fertilizer’, Chemosphere 30, 539–546.CrossRefGoogle Scholar
  108. Yagi, K., Minami, K., and Ogawa, Y.: 1990, ‘Effects of water percolation on methane emission from paddy fields’, NIAES, Res. Rep. Div. Environ. Planning 6, 105–112.Google Scholar
  109. Yagi, K., and Minami, K.: 1990, ‘Effect of organic matter application on methane emission from some Japanese paddy fields.’, Soil Sci. Plant Nutr. 36, 599–610.Google Scholar
  110. Yagi, K., and Minami, K.: 1993, ‘Spatial and temporal variations of methane flux from a rice paddy field’, in Oremland, R.S. (ed.), Biogeochemistry of Global Change: Radiative Trace Gases, Chapman & Hall, New York, pp. 353–368.Google Scholar
  111. Yagi, K., Kumagai, K., Tsuruta, H., and Minami, K.: 1994, ‘Emission, production, and oxidation of methane in a Japanese rice paddy field’, in Lal, R., et al. (eds.), Soil management and greenhouse effect, Advances in Soil Science, CRC, Lewis Publishers, Boca Raton, pp. 231–244.Google Scholar
  112. Yagi, K., Chairoj, P., Tsuruta, H., Cholitkul, W., and Minami, K.: 1994, ‘Methane emission from rice paddy fields in the central plain of Thailand’, Soil Sci. Plant Nutr. 40, 29–37.Google Scholar
  113. Yamane, I., and Sato, K.: 1961, ‘Effect of temperature on the formation of gases and ammonium nitrogen in the waterlogged soils’, Sci. Rep. Res. Inst. Tohoku Univ. D (Agr.). 12, 31–46.Google Scholar
  114. Yamane, I., and Sato, K.: 1964, ‘Decomposition of glucose and gas formation in flooded soil’, Soil Sci. Plant Nutr. 10, 127–133.Google Scholar
  115. Yoshida, T.: 1978, ‘Microbial metabolism in rice soils’, in Soils and Rice Int. Rice Res. Inst., pp. 445–463.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A.R. Mosier
    • 1
  • J.M. Duxbury
    • 2
  • J.R. Freney
    • 3
  • O. Heinemeyer
    • 4
  • K. Minami
    • 5
  • D.E. Johnson
    • 6
  1. 1.USDA/ARSFort CollinsUSA
  2. 2.Cornell UniversityIthacaUSA
  3. 3.CSIROCanberraAustralia
  4. 4.BFALBraunschweigGermany
  5. 5.JIRCASTsukubaJapan
  6. 6.Animal SciencesColorado State UniversityFort CollinsUSA

Personalised recommendations