Climatic Change

, Volume 36, Issue 3–4, pp 253–279 | Cite as




Differential temperature changes with altitude can shed light on the relative importance of natural versus anthropogenic climatic change. There has been heightened interest in this subject recently due to the finding that high-elevation tropical glaciers have been retreating and that significant melting from even the highest alpine regions has occurred in some areas during the past 20 years or so, as recorded in ice core records, which do not reveal any similar period during previous centuries to millennia. In this paper we find evidence for appreciable differences in mean temperature changes with elevation during the last several decades of instrumental records. The signal appears to be more closely related to increases in daily minimum temperature than changes in the daily maximum. The changes in surface temperature vary spatially, with Europe (particularly western Europe), and parts of Asia displaying the strongest high altitude warming during the period of record. High-elevation climate records of long standing taken at a number of mountain tops throughout the world, but primarily in Europe, are available from a number of countries. In some cases, meteorological observations at these unique mountain sites have been discontinued for a variety of reasons, usually budgetary. It is hoped that the papers published in this special issue of Climatic Change can contribute to a reassessment of the value of continuing climate measurements at these mountain observatories by the appropriate entities, so that we may continue to have access to climate information from the ’tops of the world‘.


Alpine Region Daily Minimum Climate Information Meteorological Observation Anthropogenic Climatic Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry, R. G.: 1990, ‘Changes in Mountain Climate and Glacio-Hydrological Responses’, Mountain Res. Develop. 10, 161–170.Google Scholar
  2. Barry, R. G.: 1992, Mountain Weather and Climate, Routledge, London, p. 402.Google Scholar
  3. Barry, R. G. and Chorley, R. J.: 1992, Atmosphere, Weather and Climate, Routledge, London, p. 392.Google Scholar
  4. Beniston, M. (ed.): 1994, Mountain Environments in Changing Climates, Routledge, London, p. 461.Google Scholar
  5. Beniston, M. and Fox, D. G.: 1996, ‘Impacts of Climate Change on Mountain Regions’, in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995, Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, pp. 191–213.Google Scholar
  6. Beniston, M., Rebetez, M., Giorgi, F., and Marinucci, R.: 1994, ‘An Analysis of Regional Climate Change in Switzerland’, Theor. Appl. Climatol. 49, 135–159.Google Scholar
  7. Beniston, M., Diaz, H. F., and Bradley, R. S.: 1997, ‘Climatic Change at High Elevation Sites: An Overview’, Clim. Change (this issue).Google Scholar
  8. Bottomley, M., Folland, C. K., Hsiung, J., Newell, R. E., and Parker, D. E.: 1990, Global Ocean Surface Temperature Atlas, U.K. Met Office, Bracknell.Google Scholar
  9. Cubasch, U., Hasselmann, K., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., and Sassen, R.: 1992, ‘Time-Dependent Greenhouse Warming Computations with a Coupled Atmosphere-Ocean Model’, Clim. Dyn. 8, 55–69.Google Scholar
  10. Dessens, J. and Bücher, A.: 1994, ‘Changes in Minimum and Maximum Temperatures at the Pic du Midi in Relation with Humidity and Cloudiness, 1882–1984’, Atmos. Res. 37, 147–162.Google Scholar
  11. Diaz, H. F.: 1996, ‘Temperature Changes on Long Time and Large Spatial Scales: Inferences from Instrumental and Proxy Records’, in Jones, P. D,. Bradley, R. S., and Jouzel, J. (eds.), Climatic Variations and Forcing Mechanisms of the Last 2000 Years, Springer-Verlag, Berlin, pp. 585–601.Google Scholar
  12. Diaz, H. F. and Bradley, R. S.: 1995, ‘Documenting Natural Climatic Variations: How Different is the Climate of the 20th Century from that of Previous Centuries?’, in Martinson, D. G., Bryan, K., Ghil, M., Hall, M. M., Karl, T. R., Sarachik, E. S., Sorooshian, S., and Talley, L. D. (eds.), Natural Climate Variability on Decade-to-Century Time Scales, National Research Council, National Academy Press, Washington, D.C., pp. 17–31.Google Scholar
  13. Diaz, H. F. and Graham, H. F.: 1996, ‘Recent Changes in Tropical Freezing Heights and the Role of Sea Surface Temperature’, Nature 383, 152–155.Google Scholar
  14. Diaz, H. F. and Kiladis, G. N.: 1995, ‘Climatic Variability on Decadal to Century Time Scales’, in Henderson-Sellers, A. (ed.), Future Climates of the World: A Modelling Perspective, World Survey of Climatology, Elsevier Publ. Co., pp. 191–244.Google Scholar
  15. Flohn, H., Kapala, A., Knoche, H. R., and Mächel, H.: 1992, ‘Water Vapor as an Amplifier of the Greenhouse Effect: New Aspects’, Meteorol. Z. N.F. 1, 122–138.Google Scholar
  16. Grabherr, G., Gottfried, M., and Pauli, H.: 1994, ‘Climate Effects on Mountain Plants’, Nature 369, 448.Google Scholar
  17. Hastenrath, S. L.: 1968, ‘Der regionale und jahrzeitliche Wandel des vertikalen Temperaturgradienten und seine Behandlung als Wärmhaushaltsproblem’, Meterol. Rundsch. 1, 46–51.Google Scholar
  18. Hastenrath, S. and Kruss, P.: 1992, ‘The Dramatic Retreat of Mount Kenya's Glaciers between 1963 and 1987’, Ann. Glaciol. 16, 127–133.Google Scholar
  19. Hurrell, J. W. and van Loon, H.: 1997, ‘Decadal Variations in Climate Associated with the North Atlantic Oscillation’, Clim. Change (this issue).Google Scholar
  20. Intergovernmental Panel on Climate Change (IPCC): 1992, Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 198.Google Scholar
  21. Intergovernmental Panel on Climate Change (IPCC): 1996, Houghton, J. T. et al. (eds.), ‘Climate Change 1995, The Science of Climate Change’, Cambridge University Press, Cambridge, p. 572.Google Scholar
  22. Jones, P. D., Raper, S. C. B., and Wigley, T. M. L.: 1996: ‘southern Hemisphere Surface Air Temperature Variations, 1851–1984’, J. Clim. Appl. Meteor. 25, 1213–1230.Google Scholar
  23. Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K. P., Lindseay, J., Charlson, R. J., and Peterson, T. C.: 1993, ‘A New Perspective on Recent Global Warming: Asymmetric Trends of Daily Maximum and Minimum Temperature’, Bull. Amer. Met. Soc. 74, 1007–1023.Google Scholar
  24. Oerlemans, J.: 1994, ‘Quantifying Global Warming from the Retreats of Glaciers’, Science 264, 243–245.Google Scholar
  25. Oort, A. H. and Liu, H.: 1993, ‘Upper-Air Temperature Trends over the Globe’, J. Clim. 6, 292–307.Google Scholar
  26. Schneider, S. H.: 1990, ‘The Global Warming Debate Heats Up: An Analysis and Perspective’, Bull. Amer. Meteror. Soc. 71, 1292–1304.Google Scholar
  27. Schubert, C.: 1992: ‘The Glaciers of the Sierra Nevada de Merida (Venezuela): A Photographic Comparison of Recent Deglaciation’, Erdkunde 46, 58–64.Google Scholar
  28. Stekl, J. and Podzimek, J.: 1993, ‘Old Mountain Meteorological Station Milesovka (Donnersberg) in Central Europe’, Bull. Amer. Meteorol. Soc. 74, 831–834.Google Scholar
  29. Tett, S. F. B., Mitchell, J. F. B., Parker, D. E., and Allen, M. R.: 1996, ‘Human Influence on the Atmospheric Vertical Temperature Structure: Detection and Observations’, Science 274, 1170–1173.Google Scholar
  30. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Yao, T., Dyurgerov, M., and Dai, J.: 1993, ‘“Recent Warming”: Ice Core Evidence from Tropical Ice Cores with Emphasis on Central Asia’, Global Planet. Lett. 7, 145–156.Google Scholar
  31. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Hendeson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.-B.: 1995, ‘Late Glacial Stage and Holocene Tropical Ice Core Records from Huascarán, Peru’, Science 269, 48–50.Google Scholar
  32. Vinnikov, K. Ya, Robock, A., Stouffer, R. J., and Manabe, S.: 1996, ‘Vertical Patterns of Free and Forced Climate Variations’, Geophys. Res. Lett. 23, 1801–1804.Google Scholar
  33. Vose, R. S., Schmoyer, R. L., Steurer, P. M., Peterson, T. C. R., Heim, Karl, T. R., and Eischeid, J. K.: 1992, The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data, ORNL/CDIAC-53, NDP-041, Carbon Dioxide Analysis Center, p. 100.Google Scholar
  34. Weber, R. O., Talkner, P., and Stefanicki, G.: 1994, ‘Asymmetric Diurnal Temperature Change in the Alpine Region’, Geophys. Res. Lett. 21, 673–676.Google Scholar
  35. Weber, R. O., Talkner, P., Auer, I., Böhm, R., Gajić-Čapka, M., Zaninović, K., Brázdil, R., and Faško, P.: 1997, ‘20th-Century Changes of Temperature in the Mountain Regions of Central Europe’, Clim. Change (this issue).Google Scholar
  36. Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: 1984, ‘On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology’, J. Clim. Appl. Meteorol. 23, 201–213.Google Scholar
  37. Woodruff, S. D., Slutz, R. J., Jenne, R. L., and Steurer, P. M.: 1987, ‘A Comprehensive Ocean-Atmosphere Data Set’, Bull. Amer. Met. Soc. 68, 1239–1250.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 2
  1. 1.NOAA/ERL/CDCBoulderU.S.A
  2. 2.Department of GeosciencesUniversity of MassachusettsAmherstU.S.A

Personalised recommendations