Skip to main content
Log in

Comparative analysis of satellite cell properties in heavy- and lightweight strains of turkey

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The growth of muscle during postnatal development results partly from the proliferation of satellite cells and their fusion with muscle fibres. We analysed the properties of satellite cells in a heavyweight (HW) turkey strain characterized by high body weight and a fast growth rate, and in a lightweight farm strain (LW) characterized by low body weight and a slow growth rate. Satellite cell activation was then examined in stretched-overloaded anterior latissimus dorsi (ALD) muscle by weighting one wing in young turkeys from both strains. As early as day 1 of stretching for HW and day 2 for LW, small embryonic-like fibres expressing ventricular cardiac myosin heavy chain (MHC) isoform were observed. Following four days of stretching, the number of nascent fibres had increased in both strains but was significantly greater in HW than LW ALD muscle. The proliferation and differentiation capacities of satellite cells from HW and LW strains were investigated in culture. As judged by in vitro measurements of 3H-thymidine incorporation and DNA content, satellite cells of HW turkey exhibited a greater proliferative capability than those of LW turkey. No differences in the temporal appearance of muscle markers (desmin, MHC isoforms) were noted in vitro between the two strains. These data confirm our in vivo observations indicating that selection based on growth rate does not modify muscle fibre maturation. Our in vivo and in vitro observations suggest that variations in the postnatal muscle growth pattern between HW and LW strains may be related to a difference in the capacity of their satellite cells to proliferate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberle, E. D. & Stewart, T. S. (1983) Growth of fiber types and apparent fiber number in skeletal muscle of broiler and layer type chickens. Growth47, 133–45.

    Google Scholar 

  • Allen, R. E. & Raukin, L. L. (1990) Regulation of satellite cells during skeletal muscle growth and development. PSEBM194, 81–6.

    CAS  Google Scholar 

  • Alway, S. E. (1993) Stretch induces non-uniform isomyosin expression in the anterior latissimus dorsi of the Japanese quail. Anat. Res.237, 1–7.

    Article  CAS  Google Scholar 

  • Alway, S. E., Gonyea, W. J. & Davis, M. E. (1990) Muscle fiber formation and fiber hypertrophy during the onset of stretch overload. Am. J. Physiol.259, C92–C102.

    PubMed  CAS  Google Scholar 

  • Alway, S. E., Winchester, P. K., Davis, M. E. & Gonyea, W. J. (1989) Regionalized adaptations and muscle fiber proliferation in stretch-induced enlargement. J. Appl. Physiol.66, 771–81.

    PubMed  CAS  Google Scholar 

  • Bandman, E. (1985) Continued expression of neonatal myosin heavy chain in adult dystrophic skeletal muscle, Science, 227, 780–82.

    PubMed  CAS  Google Scholar 

  • Bandman, E. & Bennett, M. R. (1988) Diversity of fast myosin heavy chain expression during development of gastrocnemius, bicep brachii, and posterior latissimus dorsi muscles in normal and dystrophic chickens. Dev. Biol.130, 220–31.

    Article  PubMed  CAS  Google Scholar 

  • Bandman, E., Bourke, D. L. & Wick, M. (1990) Regulation of myosin heavy chain expression during development, maturation, and regeneration in avian muscles: the role of myogenic and nonmyogenic factors. In The Dynamic State of Muscle Fibres (edited by PETTE, D.) pp. 127–38. Berlin: Walter de Gruyter.

    Google Scholar 

  • Barnard, E. A., Lyles, J. M. & Pizzey, J. A. (1982) Fiber types in chicken skeletal muscles and their changes in muscular dystrophy. J. Physiol. (Lond)331, 333–54.

    CAS  Google Scholar 

  • Bischoff, R. (1990) Control of satellite cell proliferation. Adv. Exp. Med. Biol.280, 147–57.

    PubMed  CAS  Google Scholar 

  • Bourke, D. L., Wilie, S., Theon, A. & Bandman, E. (1995) Myosin heavy chain expression following myoblast transfer into regenerating chicken muscle. Basic Appl. Myol.5, 13–21.

    Google Scholar 

  • Bourke, D. L., Wilie, S., Wick, R. M. & Bandman, E. (1991) Differentiating skeletal muscle cells initially express a ventricular myosin heavy chain. Basic Appl. Myol.1, 13–21.

    Google Scholar 

  • Campion, D. R. (1984) The muscle satellite cell: a review. Int. Rev. Cytol.87, 225–51.

    Article  PubMed  CAS  Google Scholar 

  • Cantini, M. & Carraro, U. (1995) Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J. Neuropathol. Exp. Neurol.54, 121–8.

    PubMed  CAS  Google Scholar 

  • Cerny, L. C. & Bandman, E. (1987) Expression of myosin heavy chain isoform in regenerating myotubes of innervated and denervated chicken pectoral muscles. Dev. Biol.119, 350–62.

    Article  PubMed  CAS  Google Scholar 

  • ChÉrel, Y., Hurtrel, M., Gardahaut, M. F., Merly, F., Magras-Resch, C., Fontaine-Perus, J. & Wyers, M. (1994) Comparison of postnatal development of latissimus dorsi (ALD) muscle in heavy-and light-weight strains of turkey (Meleagris gallopavo). Growth, Dev. & Ag.58, 157–65.

    Google Scholar 

  • Coutinho, L. L., Morris, J., Marks, H. L., Buhr, R. J. & Ivarie, R. (1993) Delayed somite formation in a quail line exhibiting myofiber hyperplasia is accompanied by delayed expression of myogenic regulatory factors and myosin heavy chain. Development117, 563–9.

    PubMed  CAS  Google Scholar 

  • Duclos, M. J., Chevalier, B., Remignon, H., Ricard, F. H., Goddard, C. & Simon, J. (1996) Divergent selection for high or low growth rate modifies the response of muscle cells to serum or insulin-like growth factor-I in vitro. Growth Regulation6, 176–84.

    PubMed  CAS  Google Scholar 

  • DÜsterhÖft, S. & Pette, D. (1993) Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation53, 25–33.

    Article  PubMed  Google Scholar 

  • Feldman, J. L. & Stockdale, F. E. (1991) Skeletal muscle satellite cell diversity: satellite cells form fibers of different types in culture. Dev. Biol.143, 320–34.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J. R., Ewton, D. Z. & Magri, K. A. (1991) Hormones, growth factors and myogenic differentiation. Ann. Rev. Physiol.53, 201–16.

    Article  CAS  Google Scholar 

  • Gardahaut, M. F., Rouaud, T., Renaud. D., Khaskiye, A. & Le Douarin, G. H. (1989) Role of nerve and tension in maturation of post-hatching slow tonic muscle in chicken. Muscle and Nerve12, 943–52.

    Article  PubMed  CAS  Google Scholar 

  • Gardahaut, M. F., Rouaud, T., Renaud, D. & Le Douarin, G. H. (1988) Developmental changes in myosin isoforms from slow and fast latissimus dorsii muscles in the chicken. Differentiation37, 81–5.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, A. L., Etlinger, J. D., Goldspink, D. F. & Jalecki, L. (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med. Sci. Sports Exercise7, 185–98.

    CAS  Google Scholar 

  • Gollnick, P. D., Parsons, D., Riedy, M. & Moore, R. L. (1983) Fiber number and size in overloaded chicken anterior latissimus dorsi muscle. J. Appl. Physiol.54, 1292–7.

    PubMed  CAS  Google Scholar 

  • Grounds, M. D. (1991) Towards understanding skeletal muscle regeneration. Pathol. Res. Pract.187, 1–22.

    PubMed  CAS  Google Scholar 

  • Hartley, R. S., Bandman, E. & Yablonka-Reuveni, Z. (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev. Biol.153, 206–16.

    Article  PubMed  CAS  Google Scholar 

  • Horak, V., Sercikovaa, K. & Knizcttova, H. (1989) Histochemical fiber types in the thigh muscles of 4 chicken inbred lines. Anat. Anzeit.169, 313–20.

    CAS  Google Scholar 

  • Kennedy, J. M., Eisenberg, B. R., Reid, S. K., Sweeney, L. J. L. J. & Zak, R. (1988) Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle. Am. J. Anat.181, 203–15.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, K. M. & Schultz, E. (1992) Mechanism of nascent fiber formation during avian skeletal muscle hypertrophy. Dev. Biol.150, 319–34.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, K. M. & Schultz, E. (1994) Role of satellite cells in altering myosin expression during avian skeletal muscle hypertrophy. Dev. Dyn.199, 52–63.

    PubMed  CAS  Google Scholar 

  • McFarland, D. C., Pesall, J. E., Gilkerson, K. K. & Ferrin, N. H. (1991) Comparison of the proliferation and differentiation of myogenic satellite cells and embryonic myoblasts derived from the turkey. Comp. Biochem. Physiol.2, 439–43.

    Article  Google Scholar 

  • McFarland, D. C., Pesall, J. E., Gilkerson, K. K. & Ferrin, N. H. (1995) The response to growth factors of cultured satellite cells derived from turkeys having different growth rates. Cytobios82, 229–38.

    PubMed  CAS  Google Scholar 

  • McFarland, D. C., Pesall, J. E., Gilkerson, K. K. & Swenning, T. A. (1993) Comparison of the proliferation and differentiation of myogenic satellite cells derived from Merriam's and commercial varieties of turkeys. Comp. Biochem. Physiol.104, 455–60.

    Article  CAS  Google Scholar 

  • Maley, M. A. L., Davies, M. J. & Grounds, M. D. (1995) Extracellular matrix, growth factors, genetics: their inuence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp. Cell Res.219, 169–79.

    Article  PubMed  CAS  Google Scholar 

  • Marks, H. L. (1978a) Growth curve changes associated with long-term selection for body weight in Japanese quail. Growth42, 129–40.

    PubMed  CAS  Google Scholar 

  • Marks, H. L. (1978b) Long-term selection for four week body-weight in Japanese quail under different nutritional environments. Theoret. Appl. Genet.52, 105–11.

    Article  Google Scholar 

  • Marks, H. L. (1988) Long-term selection for four-week body weight in Japanese quail following modifications of the selection environment. Poultry Sci.68, 455–9.

    Google Scholar 

  • Maruyama, K. & Kanamaki, N. (1991) Myosin isoform expression in skeletal muscle of turkeys at various ages. Poultry Sci.70, 1748–57.

    CAS  Google Scholar 

  • Matsuda, R., Bandman, E. & Strohman, R. C. (1982) The two myosin isoenzymes of chicken anterior latissimus dorsi muscle contain different myosin heavy chain encoded by separate mRNAs. Differentiation23, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Molnar, G. & Dodson, M. V. (1993) Satellite cell isolated from sheep skeletal muscle are not homogeneous. Basic Appl. Myol.3, 173–80.

    Google Scholar 

  • Moss, F. P. (1968) The relationship between the dimensions of the fibers and the number of nuclei during normal growth of skeletal muscle in domestic fowl. Am. J. Anat.122, 555–64.

    Article  PubMed  CAS  Google Scholar 

  • RÉmignon, H., Gardahaut, M. F., Marche, G. & Ricard, F. H. (1995) Selection for rapid growth increases the number and the size of muscle fibers without changing their typing in chickens. J. Muscle Res. Cell Motil.16, 95–102.

    Article  PubMed  Google Scholar 

  • RÉmignon, H., Lefaucheur, L., Blum, J. C. & Ricard, F. H. (1994) Effects of divergent selection for body weight on three skeletal muscle characteristics in the chicken. Poultry Sci.35, 507–18.

    Google Scholar 

  • Ricard, F. H. (1975) Essai de sélection sur la forme de la courbe de croissance chez le poulet. Ann. de Génét. et de Sé lect. Anim.7, 427–43.

    Google Scholar 

  • Robertson, T. A., Maley, M. A. L., Grounds, M. D. & Papadimitriou, J. M. (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp. Cell Res.207, 321–31.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol.175, 84–94.

    Article  PubMed  CAS  Google Scholar 

  • Shanin, K. A. & Berg, R. T. (1985) Growth pattern of muscle, fat, and bone, and carcass composition of double-muscled and normal cattle. Canad. J. Animal Sci.65, 279–94.

    Article  Google Scholar 

  • Smith, J. H. (1963) Relation of body size to muscle cell size and number in the chicken. Poultry Sci.42, 283–90.

    Google Scholar 

  • Sola, O. M., Christensen, D. L. & Martin, A. W. (1973) Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscle following stretch with and without denervation. Exp. Neurol.41, 76–100.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H. J. & Kieffer, N. M. (1974) Fetal development of the double-muscled condition in cattle. J. Anim. Sci.38, 1090–1102.

    Google Scholar 

  • Taylor, H. A. & Wilkinson, J. G. (1986) Exercise-induced skeletal muscle growth. Hyperplasia or hypertrophy? Sports Med.3, 190–200.

    PubMed  CAS  Google Scholar 

  • West, D. C., Sattar, A. & Kumar, S. (1985) A simplified in situ solubilization procedure for the determination of DNA and cell number in tissue-cultured mammalian cells. Anal. Biochem.147, 289–95.

    Article  PubMed  CAS  Google Scholar 

  • Winchester, P. K. & Gonyea, W. J. (1992) Regional injury and the terminal differentiation of satellite cells in stretched avian slow-tonic muscle. Dev. Biol.151, 459–72.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Buffinger, N., Dimario, J. & Strohman, R. C. (1989) Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med. Sci. Sports Exerc.21, S173–80.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merly, F., Magras-Resch, C., Rouaud, T. et al. Comparative analysis of satellite cell properties in heavy- and lightweight strains of turkey. J Muscle Res Cell Motil 19, 257–270 (1998). https://doi.org/10.1023/A:1005329100247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005329100247

Keywords

Navigation