Advertisement

Biotechnology Letters

, Volume 20, Issue 2, pp 137–142 | Cite as

A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations

  • Eva Joachimsthal
  • Kevin D. Haggett
  • Jin-Ho Jang
  • Peter L. Rogers
Article

Abstract

Growth of Zymomonas mobilis ZM4 in media containing sodium acetate was inhibited above 12 g sodium acetate/l at pH 5.0. Following mutagenesis of ZM4, an acetate-tolerant strain was isolated in continuous culture that grew in the presence of 20 g sodium acetate/l at pH 5.0. In continuous culture with complete cell recycle at 30 deg C and pH 5.4 using media containing 110 g glucose/l, the maintenance energy coefficient (m) for the mutant was found to increase from 1.9 g glucose/g cell dry wt.h at 12 g sodium acetate/l up to 3.9 g/g.h at 20 g/l.

Keywords

Glucose Sodium Acetate Organic Chemistry Ethanol Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyeler, W, Rogers, PL and Fiechter, A (1984) Appl Microbiol Biotechnol 19: 277-280Google Scholar
  2. Clark, TA and Mackie, KL (1984) J Chem Tech Biotechnol 34B: 101-110Google Scholar
  3. Crosa, JH and Falkow, S (1981) Plasmids. In: Manual of Methods for General Bacteriology, P Gerhardt, RGE Murray, RN Costilow, EW Nester, WA Wood, NR Krieg and PG Briggs, eds pp 266–282, Am Soc Microbiol, Washington, DCGoogle Scholar
  4. Fieschko, J and Humphrey, AE (1983) Biotechnol Bioeng 25: 1655-1660Google Scholar
  5. Jobses, IML, Egberts, GTC, van Baalen, A and Roels, JA (1985) Biotechnol Bioeng 27: 984-995Google Scholar
  6. Lawford, HG and Rousseau, JD (1993a) Appl Biochem Biotechnol 39/40: 301-322Google Scholar
  7. Lawford, HG and Rousseau, JD (1993b) Appl Biochem Biotechnol 39/40: 687-699Google Scholar
  8. Lawford, HG and Rousseau, JD (1994) Appl Biochem Biotechnol 45/46: 437-448Google Scholar
  9. Lawford, HG and Ruggiero, A (1990) Biotechnol Appl Biochem 12: 206-211Google Scholar
  10. Lee, KJ, Lefebvre, M, Tribe, DE and Rogers, PL (1980) Biotechnol Lett 2: 487-492Google Scholar
  11. McMillan, J.D. (1994) Conversion of hemicellulose hydrolysates to ethanol. In: Enzymatic Conversion of Biomass for Fuels Production, ME Himmel, JO Baker and RP Overend, eds American Chemical Society Symp Ser 566 pp 411-437, Am Chem Soc, Washington, DCGoogle Scholar
  12. Park, SC and Baratti, J (1993) Appl Microbiol Biotechnol 38: 542-549Google Scholar
  13. Rogers, PL, Lee, KJ, Skotnicki, ML and Tribe, DE (1982) Ethanol Production by Zymomonas mobilis. In: Advances in Biochemical Engineering, A Fiechter, ed vol. 23 pp 37-84 Springer, BerlinGoogle Scholar
  14. Zhang, M, Eddy, C, Deanda, K, Finkelstein, M and Picataggio, S (1995) Science 267: 240-243Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Eva Joachimsthal
    • 1
  • Kevin D. Haggett
    • 1
  • Jin-Ho Jang
    • 1
  • Peter L. Rogers
    • 1
  1. 1.Department of BiotechnologyUniversity of NSWSydneyAustralia

Personalised recommendations