Climatic Change

, Volume 39, Issue 2–3, pp 395–412

Deep Soil Moisture Storage and Transpiration in Forests and Pastures of Seasonally-Dry Amazonia

  • Peter H. Jipp
  • Daniel C. Nepstad
  • D. K. Cassel
  • C. Reis De Carvalho
Article

Abstract

To assess the impacts of land-use changes on plant-available water (PAW) and evapotranspiration (ET), volumetric water content (VWC) was measured to 8 m beneath three, adjacent ecosystems for four years (1991–1994). Estimates of PAW, ET, and deep drainage were generated for mature evergreen forest, adjacent pasture, and capoeira (second-growth forest on abandoned pasture land). PAW between 0 and 8 m depth for forest, pasture, and capoeira ranged from a low of 56, 400, and 138 mm at the end of the 1992 dry season to a high of 941, 1116, and 1021 mm during the 1994 wet season. We found significant differences in deep (4–8 m) stocks of PAW when comparing pasture with both forest types. In contrast, mature forest and capoeira PAW were not significantly different from one another at any depth during the experiment. In all three ecosystems available soil moisture from 4–8 m was depleted during the 1991 dry season by plant water uptake and was not recharged to 1991 levels until 1994 due to an intervening 2-year, El Niño Southern Oscillation event. Water balance estimates (based on measurements to 8 m) showed an average 10% decrease in ET from pasture compared to mature forest. Less than 15 years after pasture abandonment, ET in second-growth forest recovered to rates nearly equaling the mature forest rate. In seasonally dry environments annual and interannual cycles of deep soil moisture recharge and depletion influence rates of transpiration and drainage. These deep cycles are not currently incorporated in models of regional and global moisture flux.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brower, J., Zar, J., and von Ende, C.: 1990, Field and Laboratory Methods for General Ecology, 3rd ed., Wm. C. Brown Publishers, Inc., Dubuque, p. 237.Google Scholar
  2. Campbell, G. S.: 1974, ‘A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data’, Soil Sci. 117, 311-314.Google Scholar
  3. Cassel, D. and Nielsen, D.: 1986, ‘Field Capacity and Available Water Capacity’, in Klute, A. (ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical-Methods -Monograph No. 9, Amer. Soc. of Agr., Soil Sci. Soc. A., Madison, WI, p. 1188.Google Scholar
  4. Cassel, D., Kachanoski, R., and Topp, G.: 1994, ‘Practical Considerations for Using a TDR Cable Tester’, Soil Technol. 7, 113-126.Google Scholar
  5. Clapp, R. B. and Hornberger, G.M.: 1978, ‘Empirical Equations for Some Soil Hydraulic Properties’, Water Resour. Res. 14, 601-604.Google Scholar
  6. Clapperton, C. M.: 1993, Quaternary Geology and Geomorphology of South America, Elsevier, Amsterdam, p. 779.Google Scholar
  7. Ehleringer, J. B., Phillips, S., Schuster, W., and Sandquist, D.: 1991, ‘Differential Utilization of Summer Rains by Desert Plants’, Oecologia 88, 430-434.Google Scholar
  8. Empresa Brasileira de Pesquisa Agropequaria: 1973-1988, Boletí m Agropequario, Belém, Pará, Brazil.Google Scholar
  9. Fearnside, P.: 1993, ‘Deforestation in BrazilianAmazonia: The Effect of Population and Land Tenure’, Ambio 22, 537-544.Google Scholar
  10. Herkelrath, W. N., Hamburg, S. P., and Murphy, F.: 1991, ‘Automatic, Real-Time Monitoring of Soil Moisture in a Remote Field Area with Time Domain Reflectometry’, Water Resour. Res. 27, 857-864.Google Scholar
  11. Hillel, D.: 1982, Introduction to Soil Physics, Academic Press, San Diego, p. 364.Google Scholar
  12. Hodnett, M., Pimentel da Silva, L., da Rocha, H., and Cruz Senna, R.: 1995, ‘Seasonal Soil Water Storage Changes beneath Central Amazonian Rainforest and Pasture’, J. Hydrol. 170, 233-254.Google Scholar
  13. Klute, A.: 1986, ‘Water Retention: Laboratory Methods’, in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Soil Science Society of America, Madison, WI, pp. 635-685.Google Scholar
  14. Klute, A. and Dirksen C.: 1986, ‘Hydraulic Conductivity and Diffusivity: Laboratory Methods’, in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Soil Science Society of America, Madison, WI, pp. 687-734.Google Scholar
  15. Lean, J. and Warrilow D. A.: 1989, ‘Simulation of the Regional Climatic Impact of Amazonian Deforestation’, Nature 342, 411-413.Google Scholar
  16. Leopoldo, P.R., Chaves, J. G., and Franken, W. K.: 1993, ‘Solar EnergyBudgets in Central Amazonian Ecosystems: A Comparison between Natural Forest and Bare Soil Areas’, For. Ecol. Managem. 59, 313-328.Google Scholar
  17. Monteith, J. L. and Unsworth, M. H.: 1990, Principles of Environmental Physics, 2nd ed., Edward Arnold, London, p. 291.Google Scholar
  18. Negreiros, G. H. de and Nepstad, D. C.: 1994, ‘Mapping Deeply Rooting Forests of Brazilian Amazonia with GIS’, in Proceedings of the ISPRS Commission VII Symposium on Resource and Environmental Monitoring, Vol. 30(7a), pp. 334-338.Google Scholar
  19. Nepstad, D. C.: 1989, Forest Regrowth in Abandoned Pastures of Eastern Amazonia: Limitations to Tree Seedling Survival and Growth, Ph.D. Thesis, Yale University, New Haven, CT, p. 233.Google Scholar
  20. Nepstad, D. C., R. de Carvalho, C., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H. D. da Silva, E., Stone, T. A., Trumbore, S. E., and Viera, S.: 1994, ‘The Role of Deep Roots in the Hydrological and Carbon Cycles of Amazonian Forests and Pastures’, Nature 372, 666-669.Google Scholar
  21. Nepstad, D. C., Jipp, P., Moutinho, P., Negreiros, G., and Vieira, S.: 1995, ‘Forest Recovery Following Pasture Abandonment in Amazonia: Canopy Seasonality, Fire Resistance and Ants’, in Rapport, D. J., Gaudet, C. L., and Calow, P. (eds.), Evaluating and Monitoring the Health of Large-Scale Ecosystems, NATO ASI Series, Vol. I(28), SpringerVerlag, Berlin, pp. 333-349.Google Scholar
  22. Passioura, J. B. 1981, ‘Water Collection by Roots’, in Paleg, L. and Aspinall, D. (eds.), Physiology and Biochemistry of Drought Resistance in Plants, Academic Press, Australia, p. 492.Google Scholar
  23. Philander, S. G.: 1990, El Niño, La Ni ña and the Southern Oscillation, Academic Press, San Diego, p. 293.Google Scholar
  24. Polcher, J. and Laval, K.: 1994, ‘The Impact of African and Amazonian Deforestation on Tropical Climate’, J. Hydrol. 155, 389-405.Google Scholar
  25. Potter, C., Randerson, J., Field, C., Matson, P., Vitousek, P., Mooney, H., and Klooster, S.: 1993, ‘Terrestrial Ecosystem Process Model Based on Global Satellite and Surface Data’, Global Biogeochem. Cycl. 7, 811-841.Google Scholar
  26. Ratliff, L. F., Ritchie, J. T., and Cassel D. K.: 1983, ‘Field Measured Limits of Soil Water Availability as Related to Laboratory Measured Properties’, Soil Sci. Soc. Amer. J. 47, 770-775.Google Scholar
  27. Reichardt, K.: 1988, ‘Capacidad de Campo’, Rev. Bras. Ci. de Solo 12, 211-216.Google Scholar
  28. Richter, D. D. and Babbar, L. I.: 1991, ‘Soil Diversity in the Tropics’, Adv. Eco. Res. 21, 315-389.Google Scholar
  29. Roberts, J. and Cabral, O. M. R.: 1993, ‘ABRACOS: A Comparison of Climate, Soil Moisture and Physiological Properties of Forests and Pastures in the Amazon Basin’, Commonwealth Forestry Rev. 72, 310-315.Google Scholar
  30. Roberts, J., Cabral, O. M. R., Fisch, G., Molion, L. C. B., Moore, C. J., and Shuttleworth, W. J.: 1993, ‘Transpiration from an Amazonian Rainforest Calculated from Stomatal Conductance Measurements’, Agric. For. Meteorol. 65, 175-196.Google Scholar
  31. Rogers, J. C.: 1988, ‘Precipitation Variability over the Caribbean and Tropical Americas Associated with the Southern Oscillation’, J. Climate 1, 172-182.Google Scholar
  32. Ropelewski, C. and Halpert, M.: 1987, ‘Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation’, Mon. Wea. Rev. 115, 1606-1626.Google Scholar
  33. Shukla, J., Nobre, C., and Sellers, P.: 1990, ‘Amazon Deforestation and Climate Change’, Science 247, 1322-1325.Google Scholar
  34. Shumway, R.: 1988, Applied Statistical Time Series Analysis, Prentice Hall, Englewood Cliffs, NJ, p. 379.Google Scholar
  35. Shuttleworth, W., Gash, J., Roberts, J., Nobre, C., Molion, L., and de Nazare Goes Ribeiro, M.: 1991, ‘Post-Deforestation Amazonian Climate: AngloBrazilian Research to Improve Prediction’, J. Hydrol. 129, 71-85.Google Scholar
  36. Shuttleworth, W., Gash, J., Lloyd, C. R., Moore, C. J., and Roberts, J.: 1984, ‘Eddy Correlation Measurements of Energy Partitioning for Amazonian Forest’, Quart. J. Roy. Meteorol. Soc. 110, 1143-1162.Google Scholar
  37. Skole, D. and Tucker, C.: 1993, ‘Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988’, Science 260, 1905-1910.Google Scholar
  38. Soil Survey Staff: 1988, Keys to Soil Taxonomy, 4th ed., U.S. Dept. of Agriculture, SMSS Tech. Monogr. #6, Cornell University, Ithaca, NY, p. 280.Google Scholar
  39. Sombroek, W. G.: 1966, Amazon Soils: A Reconnaissance of the Soils of the Brazilian Amazon Region, Centre for Agricultural Publications and Documentation, Wageningen, p. 292.Google Scholar
  40. Stone, T., Schlesinger, P., Houghton, R., and Woodwell, G.: 1994, ‘A Map of the Vegetation of South America Based on Satellite Imagery’, Photogramm. Eng. Rem. Sens. 60, 541-551.Google Scholar
  41. Topp, G. C., Davis, J. L., and Annan, A. P.: 1980, ‘Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines’, Water Resour. Res. 16, 574-582.Google Scholar
  42. Topp, G. C. and Davis, J. L.: 1985, ‘Measurement of Soil Water Content Using Time Domain Reflectometry (TDR): A Field Evaluation’, Soil Sci. Soc. Amer. J. 49, 19-24.Google Scholar
  43. Topp, G. C., Galganov, Y. T., Ball, B. C., and Carter, M. R.: 1993, ‘Soil Water Desorption Curves’, in Carter, M. R. (ed.), Soil Sampling and Methods of Analysis, Lewis Publishers, Boca Raton, p. 823.Google Scholar
  44. Trumbore, S. E., Davidson E. A., de Camargo P. B., Nepstad, D. C., and Martinelli, L. A.: 1995, ‘Belowground Cycling of Carbon in Forests and Pastures of Eastern Amazonia’, Global Biogeochem. Cycl. 9, 515-528.Google Scholar
  45. Uhl, C. and Kauffman, J. B.: 1990, ‘Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon’, Ecology 71, 437-449.Google Scholar
  46. Vörösmarty, C., Moore III, B., Grace, A., Gildea, M., Mellilo, J., Peterson, B., Rasteter, E., and Steudler, P.: 1989, ‘Continental ScaleModels of Water Balance and Fluvial Transport: An Application to South America’, Global Biogeochem. Cycl. 3, 241-265.Google Scholar
  47. Webb, R., Rosenzweig, C., and Levine, E.: 1993, ‘Specifying Land Surface Characteristics in General Circulation Models: Soil Profile Dataset and Derived Water-Holding Capacities’, Global Biogeochem. Cycl. 7, 97-108.Google Scholar
  48. Wright, I. R., Gash, J. H. C., R. da Rocha, H., Shuttleworth, W. J., Nobre, C. A., Maitelli, G. T., Zamparoni, C. A. G. P., and Carvalho, P. R. A.: 1992, ‘Dry Season Micrometeorology of Central Amazonian Ranchland’, Quart. J. Roy. Meteorol. Soc. 118, 1083-1099.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Peter H. Jipp
    • 1
  • Daniel C. Nepstad
    • 2
  • D. K. Cassel
    • 3
  • C. Reis De Carvalho
    • 4
  1. 1.The Nicholas School of the EnvironmentDuke UniversityDurhamU.S.A
  2. 2.The Woods Hole Research CenterWoods HoleU.S.A
  3. 3.North Carolina State UniversityRaleighU.S.A
  4. 4.Empresa Brasileira de Pesquisa Agropequaria, BelémParaBrazil

Personalised recommendations