Studia Logica

, Volume 65, Issue 1, pp 91–112 | Cite as

Algebraic Characterizations of Various Beth Definability Properties

  • Eva Hoogland

Abstract

In this paper it will be shown that the Beth definability property corresponds to surjectiveness of epimorphisms in abstract algebraic logic. This generalizes a result by I. Németi (cf. [11, Theorem 5.6.10]). Moreover, an equally general characterization of the weak Beth property will be given. This gives a solution to Problem 14 in [20]. Finally, the characterization of the projective Beth property for varieties of modal algebras by L. Maksimova (see [15]) will be shown to hold for the larger class of semantically algebraizable logics.

Abstract algebraic logic Beth definability property epimorphisms 

References

  1. [1]
    AndrÉka, H., Á. Kurucz, I. NÉmeti, and I. Sain, 'Methodolgy of applying algebraic logic to logic', in: M. Nivat, C. Rattray, and T. Rus (eds.), Algebraic Methodology and Software Technology (AMAST'93), Workshops in Computing, pages 7-28. Springer-Verlag, 1994. Extended version appeared in the Proceedings of the Summer School of Algebraic Logic 1994.Google Scholar
  2. [2]
    Beth, E. W., 'On Padoa's method in the theory of definition', Nederl. Akad. Welensch. Proc. Ser. A. 56 = Indagationes Math. 15: 330-339, 1953.Google Scholar
  3. [3]
    Barwise, J., and S. Feferman (eds.), Model-Theoretic Logics, New York, Springer-Verlag, 1985.Google Scholar
  4. [4]
    Blok, W. J., and D. Pigozzi, 'Algebraizable logics', Memoirs of the American Mathematical Society 77, 396: vi 78 pp., 1989.Google Scholar
  5. [5]
    Blok, W. J., and D. Pigozzi, 'Algebraic semantics for universal Horn logic without equality', in: J. D. H. Smith and A. Romanowska (eds.), Universal Algebra and Quasigroup Theory (Proc, Conf, Jadwisin, Poland, May 23–28, 1989), volume 19 of Research and Exposition in Mathematics, pages 1-56, Berlin, Heldermann Verlag, 1992.Google Scholar
  6. [6]
    Chang, C., and H. Keisler, Model Theory, volume 73 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, third edition, 1990.Google Scholar
  7. [7]
    Czelakowski, J., and D. Pigozzi, 'Amalgamation and interpolation in abstract algebraic logic', in: X. Caicedo and C. H. Montenegro (eds.), Models, Algebras and Proofs, volume 203 of Lecture Notes in Pure and Applied Matehmatics Series, pages 187-265, New York and Basel, Marcel Dekker, 1998.Google Scholar
  8. [8]
    Font, J. M., and R. Jansana, 'On the sentential logics associated with strongly nice and semi-nice general logics', Bulletin of the IGPL 2: 5-67, 1994.Google Scholar
  9. [9]
    Font, J. M., R. Jansana, and D. Pigozzi (eds.), Workshop on Abstract Algebraic Logic, vol. 10 of Quaderns, Bellaterra (Barcelona), 1998, Centre de Recerca Matemàtica.Google Scholar
  10. [10]
    Friedman, H. M., 'Beth's theorem in cardinality logics', Israel Journal of Mathematics 14: 205-212, 1973.Google Scholar
  11. [11]
    Henkin, L., J. D. Monk, and A. Tarski, Cylindric Algebras. Parls I & II, North-Holland, Amsterdam, 1971 & 1985.Google Scholar
  12. [12]
    Hoogland, E., 'Algebraic characterizations of two Beth definability properties', Master thesis, University of Amsterdam, 1996.Google Scholar
  13. [13]
    L. Maksimova, 'The Beth properties, interpolationa and amalgamability in varicties of modal algebras', Soviet Math. Dokl. 44(1): 327-331, 1992.Google Scholar
  14. [14]
    Maksimova, 'Definability and interpolation in classical modal logics', Contemporary Mathematics 131(3): 583-599, 1992.Google Scholar
  15. [15]
    Maksimova, L., 'On the Beth definability properties in varieties of modal algebras', in [9], pages 109-115.Google Scholar
  16. [16]
    NÉmeti, I., and H. AndrÉka, 'General algebraic logic: a perspective on “What is logic”', in D. M. Gabbay (ed.), What Is a Logical System, pages 393-444, Clarendron Press, Oxford, 1994.Google Scholar
  17. [17]
    NÉmeti, I., 'Beth definability is equivalent with surjectiveness of epis in general algebraic logic', Technical report, Math, Inst. Hungar, Acad. Sci., Budapest, 1984.Google Scholar
  18. [18]
    Padoa, A., 'Théorie algébrique des nombres entiers, précédé d'une introduction logique à une théorie déductive quelconque', in le Congrès International de Philosophie (1900 Paris), volume 3, pages 309-365, 1900.Google Scholar
  19. [19]
    Sain, I., 'Strong amalgamation and epimorphisms of cylindric algebras and Boolean algebras with operators', Preprint 17/1984, Math. Inst. Hungar. Acad. Sci., Budapest, 1984 (to appear in Studia Logica).Google Scholar
  20. [20]
    Sain, I., 'Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic', in: C. H. Bergman, R. D. Maddux, and D. Pigozzi (eds.), Algebraic Logic and Universal Algebra in Computer Science, volume 24 of Lecture Notes in Computer Science, pages 209-226, Springer-Verlag, Berlin, Heidelberg, New York, 1990.Google Scholar
  21. [21]
    Sain, I., 'On characterizations of definability properties in abstract algebraic logic', in [9], pages 162-175.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Eva Hoogland
    • 1
  1. 1.ILLCUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations