Studia Logica

, Volume 66, Issue 2, pp 253–271 | Cite as

The Classification of Propositional Calculi

  • Alexander S. Karpenko
Article
  • 48 Downloads

Abstract

We discuss Smirnov’s problem of finding a common background for classifying implicational logics. We formulate and solve the problem of extending, in an appropriate way, an implicational fragment H of the intuitionistic propositional logic to an implicational fragment TV of the classical propositional logic. As a result we obtain logical constructions having the form of Boolean lattices whose elements are implicational logics. In this way, whole classes of new logics can be obtained. We also consider the transition from implicational logics to full logics. On the base of the lattices constructed, we formulate the main classification principles for propositional logics.

implicational logics combinators independence finite Boolean lattice maximal lattice of logics full logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, A. R., and N. D. Belnap jr., Entailment: The logic of relevance and necessity, Vol. 1, Princeton, 1975.Google Scholar
  2. [2]
    Anderson, A. R., and N. D. Belnap jr., ‘The pure calculus of entailment’, The Journal of Symbolic Logic 27 (1962), 19-52.Google Scholar
  3. [3]
    Avron, A., ‘Relevant entailment — semantics and formal system’, The Journal of Symbolic Logic 49 (1984), 334-342.Google Scholar
  4. [4]
    Belnap jr., N. D., ‘Display logic’, Journal of Philosophical Logic 11 (1982), 375-417.Google Scholar
  5. [5]
    Chang, C. C., ‘A new proof of the completeness of the Łukasiewicz axioms’, Transactions of the American Mathematical Society 93 (1959), 74-80.Google Scholar
  6. [6]
    Church, A., ‘The weak theory of implication’, in Kontrolliertes Denken, Untersuchungen zum Logikkalkül und der Logik der Einzelwissenschaften, A. Menne et al. (ed.), Munich, 1951, pp. 22-37. (Abstract: ‘The weak positive implicational propositional calculus’, The Journal of Symbolic Logic 16 (1951), p. 238.)Google Scholar
  7. [7]
    Curry, H. B., ‘Generalisation of the deduction theorem’, Proceedings of the International Congress of Mathematicians 2 (1954), Amsterdam, pp. 399-400.Google Scholar
  8. [8]
    Curry, H. B., and R. Feys, Combinatory Logic, Vol. 1, Amsterdam, 1958.Google Scholar
  9. [9]
    DoŠen, K., ‘Sequent-systems and groupoid models I’, Studia Logica 47 (1988), 353-385.Google Scholar
  10. [10]
    DoŠen, K., ‘Sequent-systems and groupoid models II’, Studia Logica 48 (1989), 41-65.Google Scholar
  11. [11]
    DoŠen, K., and P. Schroeder-Heister (eds.), Substructural Logics, Oxford, 1993.Google Scholar
  12. [12]
    Dyrda, K., ‘On classification of commutative BCK-logics’, Bulletin of the Section of Logic 14 (1985), 30-33.Google Scholar
  13. [13]
    Gabbay, D. V., and R. J. G. B. De Queiroz, ‘Extending the Curry-Howard interpretation to linear, relevant and other resource logics’, The Journal of Symbolic Logic 57 (1992), 1319-1365.Google Scholar
  14. [14]
    Hacking, I., ‘What is strict implication?’, The Journal of Symbolic Logic 28 (1963), 51-71.Google Scholar
  15. [15]
    Heyting, A., ‘Die formalen Regeln der intuitionistischen Logik’, Sitzungsberichte der Preussischen Academie der Wissenschaften zu Berlin, Berlin, 1930, pp. 42-56.Google Scholar
  16. [16]
    Karpenko, A. S., ‘Lattices of implicational logics’, Bulletin of the Section of Logic 21 (1992), 82-91.Google Scholar
  17. [17]
    Karpenko, A. S., ‘Construction of classical propositional logic’, Bulletin of the Section of Logic 22 (1993), 92-97.Google Scholar
  18. [18]
    Karpenko, A. S., ‘Implicational logics: lattices and construction’, Logical Investigations 2 (1993), Moscow, pp. 224-258 (in Russian).Google Scholar
  19. [19]
    Karpenko, A. S., Many-Valued Logics (monograph), Logic and Computer, Vol. 4, Moscow, 1997, (in Russian).Google Scholar
  20. [20]
    Karpenko, A. S., ‘A maximal lattice of implicational logics’, Bulletin of the Section of Logic 27 (1992), 29-32.Google Scholar
  21. [21]
    Karpenko, A. S., and S. A. Pavlov, ‘Matrices for independence of the transitivity axiom in the axiomatization of classical implication’, in Proceedings of the Research Seminar in Logic of Institute of Philosophy, Russian Academy of Sciences, 1993, Moscow, 1994, pp. 107-109 (in Russian).Google Scholar
  22. [22]
    Karpenko, A. S., and V. M. Popov, ‘BCKX is the axiomatization of the implicational fragment of Łukasiewicz’s infinite-valued logic Łω’, Bulletin of the Section of Logic 26 (1997), 112-117.Google Scholar
  23. [23]
    Kashima, R, and N. Kamide, ‘Substructural implicational logics including the relevant logic E’, Studia Logica 63 (1999), 181-212.Google Scholar
  24. [24]
    Lemmon, E. J., C. A. Meredith, D. Meredith, A. N. Prior, I. Thomas, ‘Calculi of pure strict implication’, in Philosophical Logic, Dordrecht, 1969, pp. 215-250.Google Scholar
  25. [25]
    Łukasiewicz, J., ‘O logice trójwartościowej’, Ruch Filozoficzny 5 (1920), 170-171. (English translation: J. Łukasiewicz, ‘On three-valued logic’, in Selected Works, Warszawa, 1970, pp. 87–88.)Google Scholar
  26. [26]
    Łukasiewicz, J., Elementy logiki matematycznej, Warszawa, 1929. (English translation: Elements of Mathematical Logic, N.Y., 1963.)Google Scholar
  27. [27]
    Łukasiewicz, J., and A. Tarski, ‘Untersuchungen über den Aussagenkalkül’, Comptes rendus de la Societé des Sciences et des Lettres de Varsovie 23 (1930), 1-21. (English translation: J. Łukasiewicz and A. Tarski, ‘Investigations into the sentential calculus’, Selected Works, Warszawa, 1970, pp. 131–152.)Google Scholar
  28. [28]
    Mendez, J. M., ‘Exhaustively axiomatizing S3 and S4 with a select list of representative theses’, Bulletin of the Section of Logic 17 (1988), 15-22.Google Scholar
  29. [29]
    Meyer, R. K., ‘Pure denumerable Łukasiewicz implication’, The Journal of Symbolic Logic 31 (1966), 575-580.Google Scholar
  30. [30]
    Meyer, R. K., and Z. Parks, ‘Independent axioms for the implicational fragment of Sobociński’s three-valued logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 18 (1972), 291-295.Google Scholar
  31. [31]
    Ono, H., ‘Structural rules and a logical hierarchy’, Mathematical Logic, N.Y., 1990, 95-104.Google Scholar
  32. [32]
    Pahi, B., ‘Full models and restricted extensions of propositional calculi’, Zeitschrift für mathematische Logic und Grundlagen der Mathematik 17 (1971), 5-10.Google Scholar
  33. [33]
    Prior, A. N., Formal Logic, Oxford, 1962.Google Scholar
  34. [34]
    Rasiowa, H., An Algebraic Approach to Non-Classical Logics, Amsterdam, 1974.Google Scholar
  35. [35]
    Rose, A., ‘Formalization du calcul propositional implicatif à ℵo-valeurs de Łukasiewicz’, Comptes rendus hebdomadaires des séances de l’Academie des Sciences 243 (1956), 1183-1185.Google Scholar
  36. [36]
    Rose, A., ‘Formalization du calcul propositionel implicatif à m-valeurs de Łukasiewicz’, Comptes rendus hebdomadaires des séances de l’Academie des Sciences 243 (1956), 1263-1264.Google Scholar
  37. [37]
    Rose, A., and J. B. Rosser, ‘Fragments of many-valued statement calculi’, Transaction of the American Mathematical Society 87 (1958), 1-53.Google Scholar
  38. [38]
    SchÖnfinkel, ‘Über die Bausteine der mathematischen Logik’, Mathematischen Annalen 92 (1924), 305-316. (English translation: From Frege to Gödel: a source-book in mathematical logic, J. van Heijenoort (ed.), Cambridge, 1967, pp. 355–366.)Google Scholar
  39. [39]
    Slaney, J. K., and M. V. Bunder, ‘Classical versions of BCI, BCK and BCIW logic’, Bulletin of the Section of Logic 23 (1994), 61-65.Google Scholar
  40. [40]
    Smirnov, V. A., Formal Inference and Logical Calculi, Moscow, 1972 (in Russian).Google Scholar
  41. [41]
    Smirnov, V. A., ‘Formal inference, deduction theorems and theories of implication’, Logical Inference, Moscow, 1979, pp. 54-68 (in Russian).Google Scholar
  42. [42]
    SobociŃski, B., ‘Axiomatization of a partial system of three-valued calculus of propositions’, The Journal of Computing Systems 1 (1952), 23-55.Google Scholar
  43. [43]
    Tanaka, S., ‘On axiom systems of propositional calculi’, Proceedings of the Japanese Academy 43 (1967), 192-193.Google Scholar
  44. [44]
    Tarski, A., ‘Über die Erweiterungen der unvollständigen Systeme des Aussagenkalküls’, Ergebnisse cines mathematischen Kolloquiums 7 (1934–5), 51-57. (English translation: ‘On extensions of incomplete systems of the sentential calculus’, in A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford, 1956, pp. 393–400.)Google Scholar
  45. [45]
    Turquette, A. R., ‘Independent axioms for infinite-valued logic’, The Journal of Symbolic Logic 28 (1963), 217-221.Google Scholar
  46. [46]
    Turquette, A. R., ‘A method for constructing implication logics’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12 (1966), 267-278.Google Scholar
  47. [47]
    Tuziak, R., ‘An axiomatization of the finite-valued Łukasiewicz calculus’, Studia Logica 47 (1988), 49-55.Google Scholar
  48. [48]
    Ulrich, D., ‘An integer-valued matrix characteristic for implicational S5’, Bulletin of the Section of Logic 19 (1990), 87-91.Google Scholar
  49. [49]
    Ulrich, D., ‘On the independence of B from I, C, W, K1, and Karpenko's formula X', Bulletin of the Section of Logic 23 (1994), 96-97.Google Scholar
  50. [50]
    Wajsberg, M., ‘Metalogische Beiträge’, Wiadomości Matematyczne 43 (1937), 131-168. (English translation: ‘Contributions to metalogic’, in M. Wajsberg, Logical Works, Wrocław, 1977, pp. 172–200.)Google Scholar
  51. [51]
    Wansing, H., ‘Formulas-as-types for a hierarchy of sublogics of intuitionistic propositional logic’, 1990, Bericht Nr. 9, Berlin (preprint).Google Scholar
  52. [52]
    WoŹniakowska, B., ‘Algebraic proof of the separation theorem for the infinite-valued logic of Łukasiewicz’, Reports on Mathematical Logic 10 (1978), 129-137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alexander S. Karpenko
    • 1
  1. 1.Department of Logic Institute of PhilosophyRussian Academy of SciencesMoscowRussia

Personalised recommendations