Space Science Reviews

, Volume 89, Issue 1–2, pp 21–52 | Cite as

Formation and Evolution of Corotating Interaction Regions and their Three Dimensional Structure

  • J.T. Gosling
  • V.J. Pizzo


Corotating interaction regions are a consequence of spatial variability in the coronal expansion and solar rotation, which cause solar wind flows of different speeds to become radially aligned. Compressive interaction regions are produced where high-speed wind runs into slower plasma ahead. When the flow pattern emanating from the Sun is roughly time-stationary these compression regions form spirals in the solar equatorial plane that corotate with the Sun, hence the name corotating interaction regions, or CIRs. The leading edge of a CIR is a forward pressure wave that propagates into the slower plasma ahead, while the trailing edge is a reverse pressure wave that propagates back into the trailing high-speed flow. At large heliocentric distances the pressure waves bounding a CIR commonly steepen into forward and reverse shocks. Spatial variation in the solar wind outflow from the Sun is a consequence of the solar magnetic field, which modulates the coronal expansion. Because the magnetic equator of the Sun is commonly both warped and tilted with respect to the heliographic equator, CIRs commonly have substantial north-south tilts that are opposed in the northern and southern hemispheres. Thus, with increasing heliocentric distance the forward waves in both hemispheres propagate toward and eventually across the solar equatorial plane, while the reverse shocks propagate poleward to higher latitudes. This paper provides an overview of observations and numerical models that describe the physical origin and radial evolution of these complex three-dimensional (3-D) heliospheric structures.


Solar Wind Heliocentric Distance Heliospheric Current Sheet Solar Wind Stream Astronomical Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bame, S. J., Goldstein, B. E., Gosling, J. T., Harvey, J.W., McComas, D. J., Neugebauer, M., and Phillips, J. L.: 1993, ‘Ulysses Observations of a Recurrent High Speed Stream and the Heliomagnetic Streamer Belt’, Geophys. Res. Lett. 20, 2323–2326.CrossRefADSGoogle Scholar
  2. Belcher, J.W., and Davis, L.:1971, ‘Large-Amplitude Alfvén Waves in the Interplanetary Medium-II.’, J. Geophys. Res. 76, 3,534–3,563.CrossRefADSGoogle Scholar
  3. Borrini, G., Gosling, J. T., Bame, S. J., Feldman,W.C., and Wilcox, J. M.: 1981, ‘SolarWind Helium and Hydrogen Structure near the Heliospheric Current Sheet-A Signal of Coronal Streamers at 1AU’, J. Geophys. Res. 86, 4,565–4,573.CrossRefADSGoogle Scholar
  4. Bruno, R., Villante, U., Bavassano, B., Schwenn, R., and Mariani F.: 1986, ‘In-situ Observations of the Latitudinal Gradients of the Solar Wind Parameters during 1976 and 1977’, Sol. Phys. 104, 431–445.CrossRefADSGoogle Scholar
  5. Burlaga, L. F.: 1974, ‘Interplanetary Stream Interfaces’, J. Geophys. Res. 79, 3,717–3,725.CrossRefADSGoogle Scholar
  6. Burlaga, L. F.: 1983, ‘Corotating Pressure Waves without Fast Streams in the Solar Wind’, J. Geophys. Res. 88, 6,085–6,094.CrossRefADSGoogle Scholar
  7. Burlaga, L. F.: 1984, ‘MHD Processes in the Outer Heliosphere’, Space Sci. Rev. 39, 255–316.CrossRefADSGoogle Scholar
  8. Burlaga, L. F.: 1994, ‘Shocks in the Outer Heliosphere: Voyager 2 Observations from 18.9AU to 30.2 AU (1986–1989)’, J. Geophys. Res. 99, 4,161–4,171.ADSGoogle Scholar
  9. Burlaga, L. F., Ness, N. F., Belcher, J.W., and Whang, Y. C.: 1996, ‘Pickup Protons and Pressure-Balanced Structures from 39 to 43 AU: Voyager 2 Observations during 1993 and 1994’, J. Geophys. Res. 99, 15,523–15,532.ADSGoogle Scholar
  10. Burlaga, L. F., Ness, N. F., and Belcher, J.W.: 1997, ‘Radial Evolution of Corotating Merged Interaction Regions and Flows between _14AU and _43AU’, J. Geophys. Res. 102, 4,661–4,671.ADSGoogle Scholar
  11. Burton, M. E., Smith, E. J., Balogh, A., Forsyth, R. J., Bame, S. J., Phillips, J. L., and Goldstein, B. E.: 1996, ‘Ulysses out-of-Ecliptic Observations of Interplanetary Shocks’, Astron. Astrophys. 316, 313–322.ADSGoogle Scholar
  12. Carovillano, R. L., and Siscoe, G. L.: 1969, ‘Corotating Structure in the Solar Wind’, Sol. Phys. 8, 401–414.CrossRefADSGoogle Scholar
  13. Coles, W. A.: 1995, ‘Interplanetary Scintillation Observations of the High-Latitude Solar Wind’, Space Sci. Rev. 72, 211–222.CrossRefADSGoogle Scholar
  14. Dryer, M., Smith, Z.K., Smith, E. J., Mihalov, J. D., Wolfe, J.H., Steinolfson, R. S., and Wu, S.T.: 1978, ‘MHD Modeling of Solar Wind Corotating Stream Interaction Regions Observed by Pioneer 10 and 11’, J. Geophys. Res. 83, 4,347–4,352.ADSGoogle Scholar
  15. Feldman, W.C., Asbridge, J.R., Bame, S. J., Fenimore, E. E., and Gosling, J. T.: 1981, ‘The Solar Origin of Solar Wind Interstream Flows: Near Equatorial Coronal Streamers’, J. Geophys. Res. 86, 5,408–5,416.ADSGoogle Scholar
  16. Fisk, L.A.: 1996, ‘Motion of the Footpoints of Heliospheric Magnetic Field Lines at the Sun: Implications for Recurrent Energetic Particle Events at High Heliographic Latitudes’, J. Geophys. Res. 101, 15,547-15,553.CrossRefADSGoogle Scholar
  17. Gazis, P. R., Mihalov, J.D., Barnes, A., Lazarus, A. J., and Smith, E. J.: 1989, ‘Pioneer and Voyager Observations of the Solar Wind at Large Heliocentric Distances and Latitudes’, Geophys. Res. Lett. 16, 223–226.CrossRefADSGoogle Scholar
  18. Gloeckler, G., Geiss, J., Roelof, E. C., Fisk, L. A., Ipavich, F.M., Ogilvie, K.W., Lanzerotti, L. J., von Steiger, R., and Wilken, B.: 1994, ‘Acceleration of Interstellar Pickup Ions in the Disturbed Solar Wind Observed on Ulysses’, J. Geophys. Res. 99, 17,637–17,643.CrossRefADSGoogle Scholar
  19. Gosling, J. T.: 1986, ‘Global Aspects of Stream Evolution in the Solar Wind’, in R. I. Epstein and W. C. Feldman(eds.), Magnetospheric Phenomena in Astrophysics, AIP Conf. Proceed.144, New York, pp. 124–144.Google Scholar
  20. Gosling, J. T.: 1996, ‘Corotating and Transient Solar Wind Flows in Three Dimensions’, Ann. Rev. Astron. Astrophys. 34, 35–73.CrossRefADSGoogle Scholar
  21. Gosling, J. T., Hundhausen, A. J., Pizzo, V., and Asbridge, J.R.: 1972, ‘Compressions and Rarefactions in the Solar Wind: Vela 3’, J. Geophys. Res. 77, 5,442–5,454.ADSGoogle Scholar
  22. Gosling, J. T., Hundhausen, A. J., and Bame, S. J.: 1976, ‘Solar wind Stream Evolution at Large Heliocentric Distances: Experimental Demonstration and Test of a Model’, J. Geophys. Res. 81, 2,111–2,122.ADSGoogle Scholar
  23. Gosling, J. T., Asbridge, J. R., Bame, S. J., and Feldman,W.C.: 1978, ‘SolarWind Stream Interfaces’, J. Geophys. Res. 83, 1,401–1,412.CrossRefADSGoogle Scholar
  24. Gosling, J. T., Borrini, G., Asbridge, J. R., Bame, S. J., Feldman, W.C., and Hansen, R. F.: 1981, ‘Coronal Streamers in the Solar Wind at 1AU’, J. Geophys. Res. 86, 5,438–5,448.ADSGoogle Scholar
  25. Gosling, J. T., Bame, S. J., McComas, D. J., Phillips, J. L., Pizzo, V. J., Goldstein, B. E., and Neugebauer, M.: 1993, ‘Latitudinal Variation of Solar Wind Corotating Stream Interaction Regions: Ulysses’, Geophys. Res. Lett. 20, 2789–2792.CrossRefADSGoogle Scholar
  26. Gosling, J. T., Bame, S. J., McComas, D. J., Phillips, J. L., Pizzo, V. J., Goldstein, B. E., and Neugebauer, M.: 1995a, ‘SolarWind Corotating Interaction Regions out of the Ecliptic Plane: Ulysses’, Space Sci. Rev. 72, 99–104.CrossRefADSGoogle Scholar
  27. Gosling, J. T., Bame, S. J., Feldman, W.C., McComas, D. J., Phillips, J. L., Goldstein, B. E., Neugebauer, M., Burkepile, J., Hundhausen, A. J., and Acton, L.: 1995b, ‘The Band of Solar Wind Variability at Low Heliographic Latitudes near Solar Activity Minimum: Plasma Results from the Ulysses Rapid Latitude Scan’, Geophys. Res. Lett. 22, 3329–3332.CrossRefADSGoogle Scholar
  28. Gosling, J. T., Feldman, W.C., McComas, D. J., Phillips, J. L., Pizzo, V. J., and Forsyth, R. J.: 1995c, ‘Ulysses Observations of Opposed Tilts of Solar Wind Corotating Interaction Regions in the Northern and Southern Solar Hemispheres’, J. Geophys. Res. 22, 3,333–3,336.Google Scholar
  29. Gosling, J. T., Bame, S. J., Feldman, W.C., McComas, D. J., Riley, P., Goldstein, B. E., and Neugebauer, M.: 1997, ‘The Northern Edge of the Band of SolarWind Variability, Ulysses at_4.5AU’, Geophys. Res. Lett. 24, 309–312.CrossRefADSGoogle Scholar
  30. Hoeksema, J. T.: 1995, ‘The Large-Scale Structure of the Heliospheric Current Sheet during the Ulysses Epoch’, Space Sci. Rev. 72, 137–148.CrossRefADSGoogle Scholar
  31. Hundhausen, A. J.: 1972, Coronal Expansion and Solar Wind, Springer-Verlag, New York.Google Scholar
  32. Hundhausen, A. J.: 1973, ‘Nonlinear Model of High-Speed Solar Wind Streams’, J. Geophys. Res. 78, 1,528–1,542.ADSGoogle Scholar
  33. Hundhausen, A. J.: 1977, ‘An Interplanetary View of Coronal Holes’, in J. B. Zirker (ed.), Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press., Boulder, pp. 225–329.Google Scholar
  34. Hundhausen, A. J., and Gosling, J. T.: 1976, ‘Solar Wind Structure at Large Heliocentric Distances: An Interpretation of Pioneer 10 Observations’, J. Geophys. Res. 81, 1,436–1,440.CrossRefADSGoogle Scholar
  35. Jokipii, J.R., and Davis, L. Jr.: 1969, ‘Long-Wavelength Turbulence and the Heating of the Solar Wind’, Astrophys. J. 156, 1101–1106.CrossRefADSGoogle Scholar
  36. Jokipii, R. J., and Thomas, B.: 1981, ‘Effects of Drift on the Transport of Cosmic-Rays-IV. Modulation by a Wavy Current Sheet’, Astrophys. J. 243, 1115–1122.CrossRefADSGoogle Scholar
  37. Kóta, J.: 1992, ‘A Numerical Model of the Large-Scale Solar Wind in the Outer Heliosphere’, in E. Marsch and R. Schwenn(eds.), Solar Wind Seven, Pergamon, New York, pp. 205–208.Google Scholar
  38. Krieger, A. S., Timothy, A. F., and Roelof, E.C.: 1973, ‘A Coronal Hole and its Identification as the Source of a High Velocity Solar Wind Stream’, Sol. Phys. 29, 505–525.CrossRefADSGoogle Scholar
  39. Lallement, R., Bertaux, J. L., and Kurt, V.G.: 1985, ‘Solar Wind Decrease at High Heliocentric Latitudes Detected from Prognoz Interplanetary Lyman-??Mapping’, J. Geophys. Res. 90, 1,413–1,423.CrossRefADSGoogle Scholar
  40. McNutt, R. L., Jr.: 1988, ‘Possible Explanations of North-South Plasma Flow in the Outer Heliosphere and Meridional Transport of Magnetic Flux’, Geophys. Res. Lett. 15, 1523–1526.CrossRefADSGoogle Scholar
  41. Ogilvie, K.W.: 1972, ‘Corotating Shock Structures’, in P. J. Coleman, C. P. Sonett, and J.M. Wilcox (eds.), Solar Wind, NASA SP 308, Washington DC, pp. 430–434.Google Scholar
  42. Parker, E.N.: 1963, Interplanetary Dynamical Processes, John Wiley, New York.zbMATHGoogle Scholar
  43. Phillips, J. L., Balogh, A., Bame, S. J., Goldstein, B. E., Gosling, J. T., Hoeksema, J. T., McComas, D. J., Neugebauer, M., Sheeley, N.R., and Wang, Y.-M.: 1994, ‘Ulysses at 50_ South: Constant Immersion in the High-Speed Solar Wind’, J. Geophys. Res. 21, 1,105–1,108.Google Scholar
  44. Pizzo, V. J.: 1978, ‘A Three-Dimensional Model of Corotating Streams in the Solar Wind-I. Theoretical Foundations’, J. Geophys. Res. 83, 5,563–5,572.CrossRefADSGoogle Scholar
  45. Pizzo, V. J.: 1980, ‘A Three-Dimensional Model of Corotating Streams in the Solar Wind-II. Hydrodynamic Streams’, J. Geophys. Res. 85, 727–743.CrossRefADSGoogle Scholar
  46. Pizzo, V. J.: 1982, ‘A Three-Dimensional Model of Corotating Streams in the Solar Wind-III. Magnetohydrodynamic Streams’, J. Geophys. Res. 87, 4,374–4,394.CrossRefADSGoogle Scholar
  47. Pizzo, V. J.: 1991, ‘The Evolution of Corotating Stream Fronts near the Ecliptic Plane in the Inner Solar System-II. Three-Dimensional Tilted-Dipole Fronts’, J. Geophys. Res. 96, 5,405–5,420.CrossRefADSGoogle Scholar
  48. Pizzo, V. J.: 1994a, ‘Global, Quasi-Steady Dynamics of the Distant Solar Wind-I. Origins of North-South Flows in the Outer Heliosphere’, J. Geophys. Res. 99, 4,173–4,183.ADSGoogle Scholar
  49. Pizzo, V. J.: 1994b, ‘Global, Quasi-Steady Dynamics of the Distant Solar Wind-II. Deformation of the Heliospheric Current Sheet’, J. Geophys. Res. 99, 4,185–4,191.ADSGoogle Scholar
  50. Pizzo, V. J., and Gosling, J. T.: 1994, ‘Three-dimensional Simulation of High-Latitude Interaction Regions: Comparison with Ulysses Results’, Geophys. Res. Lett. 21, 2063–2066.CrossRefADSGoogle Scholar
  51. Pizzo, V. J., Intriligator, D. S., and Siscoe, G. L.: 1995, ‘Two-dimensional Radial-Alignment Simulation of Solar Wind Streams Observed by Pioneer 10 and 11 in 1974’, J. Geophys. Res. 100, 12,251–12,260.CrossRefADSGoogle Scholar
  52. Pneuman, G.W., and Kopp, R. A.: 1971, ‘Gas-Magnetic Field Interactions in the Solar Corona’, Sol. Phys. 18, 258–270.CrossRefADSGoogle Scholar
  53. Richter, A. K., and Luttrell, A. H.: 1986, ‘Superposed Epoch Analysis of Corotating Interaction Regions at 0.3 and 1.0AU: A Comparative Study’, J. Geophys. Res. 91, 5,873–5,878.CrossRefADSGoogle Scholar
  54. Riley, P., Gosling, J. T., Weiss, L. A., and Pizzo, V. J.: 1996, ‘The Tilts of Corotating Interaction Regions at Mid-Heliograhic Latitudes’, J. Geophys. Res. 101, 24,349-24,357.ADSGoogle Scholar
  55. Sarabhai, V.: 1963, ‘Some Consequences of Nonuniformity of Solar-Wind Velocity’, J. Geophys. Res. 68, 1,555–1,557.CrossRefADSGoogle Scholar
  56. Schwenn, R.: 1990, ‘Large-Scale Structure of the Interplanetary Medium’, in R. Schwenn and E. Marsch(eds.), Physics of the Inner Heliosphere, Springer-Verlag, Berlin Heidelberg, pp. 99–181.Google Scholar
  57. Sime, D.G.: 1983, ‘Interplanetary Scintillation Observations of the Solar Wind Close to the Sun and out of the Ecliptic’, in M. Neugebauer (ed.), Solar Wind Five, NASA CP 2280, pp. 453–467.Google Scholar
  58. Siscoe, G. L.: 1972, ‘Structure and Orientation of Solar Wind Interaction Fronts: Pioneer 6’, J. Geophys. Res. 77, 27–34.CrossRefADSGoogle Scholar
  59. Siscoe, G. L.: 1976, ‘Three-Dimensional Aspects of Interplanetary Shock Waves’, J. Geophys. Res. 81, 6,235–6,241.ADSGoogle Scholar
  60. Siscoe, G. L., Goldstein, B., and Lazarus, A. J.: 1969, ‘An East-West Asymmetry in the Solar-Wind Velocity’, J. Geophys. Res. 74, 1,759–1,762.ADSGoogle Scholar
  61. Smith, E. J., and Wolfe, J.H.: 1976, ‘Observations of Interaction Regions and Corotating Shocks between One and Five AU: Pioneers 10 and 11’, J. Geophys. Res. 3, 137-140.Google Scholar
  62. Suess, S. T., Hundhausen, A. J., and Pizzo, V.: 1975, ‘Latitude-Dependent Nonlinear High-Speed Solar Wind Streams’, J. Geophys. Res. 80, 2,023–2,029.CrossRefADSGoogle Scholar
  63. Whang, Y.C., and Burlaga, L. F.: 1988, ‘Evolution of Recurrent Solar Wind Structures between 14 AU and the Termination Shock’, J. Geophys. Res. 93, 5,446–5,460.ADSGoogle Scholar
  64. Wimmer-Schweingruber, R. F., von Steiger, R., and Paerli, R.: 1997, ‘SolarWind Stream Interfaces in Corotating Interaction Regions: SWICS/Ulysses Results’, J. Geophys. Res. 102, 17,404-17,417.CrossRefADSGoogle Scholar
  65. Zhao, X. P., and Hundhausen, A. J.: 1981, ‘Organization of SolarWind Plasma Properties in a Tilted, Heliomagnetic Coordinate System’, J. Geophys. Res. 86, 5,423–5,430.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J.T. Gosling
    • 1
  • V.J. Pizzo
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Space Environment Center, NOAA, BoulderUSA

Personalised recommendations