Space Science Reviews

, Volume 95, Issue 1–2, pp 43–53 | Cite as

Origin of Sunspots

  • Alexander Ruzmaikin


Sunspots, seen as cool regions on the surface of the Sun, are a thermal phenomenon. Sunspots are always associated with bipolar magnetic loops that break through the solar surface. Thus to explain the origin of sunspots we have to understand how the magnetic field originates inside the Sun and emerges at its surface. The field predicted by mean-field dynamo theories is too weak by itself to emerge at the surface of the Sun. However, because of the turbulent character of solar convection the fields generated by dynamo are intermittent – i.e., concentrated into ropes or sheets with large spaces in between. The intermittent fields are sufficiently strong to be able to emerge at the solar surface, in spite of the fact that their mean (average) value is weak. It is suggested here that magnetic fields emerge at the solar surface at those random times and places when the total magnetic field (mean field plus fluctuations) exceeds the threshold for buoyancy. The clustering of coherently emerged loops results in the formation of a sunspot. A non-axisymmetric enhancement of the underlying magnetic field causes in the clustering of sunspots forming sunspot groups, clusters of activity and active longitudes. The mean field, which is not directly observable, is also important, being responsible for the ensemble regularities of sunspots, such as Hale's law of sunspot polarities and the 11-year periodicity.


Magnetic Field Convection Large Space Random Time Solar Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babcock, H.W.: 1961, ‘The Topology of the Sun'sMagnetic Field and the 22-Year Cycle’, Astrophys. J. 133, 572.Google Scholar
  2. Brandenburg, A., Nordlund, A., Pulkkinen, P., Stein, R. F. and Tuominen, I.: 1990, ‘3-D Simulation of Turbulent Cyclonic Magneto-Convection’, Astron. Astrophys. 232, 277.Google Scholar
  3. Caligari, P., Moreno-Insertis, F. and Schüssler, M.: 1995, 1998, ‘Emerging Flux Tubes in the Solar Convection Zone’, Astrophys. J. 441, 886; 502, 481.Google Scholar
  4. Charbonneau, P. and MacGregor, K. B.: 1997, ‘Solar Interface Dynamos. II. Linear, Kinematic Models in Spherical Geometry’, Astrophys. J. 486, 502.Google Scholar
  5. Choudhuri, A. R. and Gilman, P.: 1987, ‘The Influence of the Coriolis Force on Flux Tubes Rising Through the Solar Convection Zone’, Astrophys. J. 316, 788.Google Scholar
  6. D'Silva, S. and Choudhuri, A. R.: 1993, ‘A Theoretical Model for Tilts of Bipolar Magnetic Regions’, Astron. Astrophys. 272, 621.Google Scholar
  7. de Toma, G., White, O. and Harvey, K. L.: 2000, ‘A Picture of Solar Minimum and the Onset of Solar Cycle 23. I. Global Magnetic Field Evolution’, Astrophys. J. 529, 1101.Google Scholar
  8. Dikpati, M. and Gilman, P.: 1999, ‘Joint Instability of Latitudinal Differential Rotation and Concentrated Toroidal Fields Below the Solar Convection Zone’, Astrophys. J. 512, 417.Google Scholar
  9. Durney, R.: 2000, ‘Meridional Motions and the Angular Momentum Balance in the Solar Convection Zone’, Astrophys. J. 528, 486.Google Scholar
  10. Eddy, J.: 1976, ‘The Maunder Minimum’, Science 192, 1189.Google Scholar
  11. Fan, Y., Fisher, G. H. and DeLuca, E. E.: 1993, ‘The Origin of Morphological Asymmetries in Bipolar Active Regions’, Astrophys. J. 405, 390.Google Scholar
  12. Field, G. B., Blackman, E. G. and Chou, H.: 1999, ‘Nonlinear _-Effect in Dynamo Theory’, Astrophys. J. 513, 638.Google Scholar
  13. Gaizauskas, V., Harvey, K. L., Harvey, J. W. and Zwaan, C.: 1983, ‘Large-Scale Patterns Formed by Solar Active Regions During the Ascending Phase of Cycle 21’, Astrophys. J. 265, 1056.Google Scholar
  14. Harvey, K. L. and Zwaan, C.: 1993, ‘Properties and Emergence Patterns of Bipolar Active Regions’, Solar Phys. 148, 85.Google Scholar
  15. Howard, R.: 1992, ‘Some Characteristics of the Development and Decay of Active Region Magnetic Flux’, Solar Phys. 142, 47.Google Scholar
  16. Hoyt, D. V. and Schatten, K. H.: 1997, ‘The Role of the Sun in Climate Change’, Oxford University Press, New York.Google Scholar
  17. Ivanova, T. S. and Ruzmaikin, A.: 1976, ‘Magnetohydromagnetic Dynamo Model of the Solar Cycle’, Sov. Astron. 20, 227.Google Scholar
  18. Kosovichev, A., et al.: 1997, ‘Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium Program’, Solar Phys. 170, 43.Google Scholar
  19. Krause, F. and Rädler, K.-H.: 1981, Mean-Field Dynamo and Mean-Field Magnetohydrodynamics. ]Springer-Verlag, Berlin.Google Scholar
  20. Longcope, D. W., Fisher, G. H. and Arend, S.: 1996, ‘The Evolution and Fragmentation of Rising Magnetic Flux Tubes’, Astrophys. J. bf 464, 999.Google Scholar
  21. Matthews, P. C., Hughes, D. W. and Proctor, M. R. E.: 1995, ‘Magnetic Buoyancy, Vorticity and Three-Dimensional Flux Tube Formation’, Astrophys. J. 448, 938.Google Scholar
  22. Meneguzzi, M., Frisch, U. and Pouquet, A.: 1981, ‘Helical and Non-Helical Turbulent Dynamics’, Phys. Rev. Lett. 47, 1060.Google Scholar
  23. Moffatt, K.: 1978, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge: Cambridge Univ. Press.Google Scholar
  24. Molchanov, S., Ruzmaikin, A. and Sokoloff, D.: 1984, ‘Dynamo Theorem’, Geophys. and Astrophys. Fluid Dyn. 30, 242.Google Scholar
  25. Parker, E. N.: ‘The Formation of Sunspots From the Solar Toroidal Field’, Astrophys. J. 121, 138.Google Scholar
  26. Parker, E. N.: 1979, ‘Sunspots and the Physics of Magnetic Flux Tubes’, Astrophys. J. 230, 905.Google Scholar
  27. Petrovay, K. and van Driel-Gesztelyi, L.: 1997, ‘Making Sense of Sunspots Decay’, Solar Phys. 176, 249.Google Scholar
  28. Ruzmaikin, A.: 1997, ‘On the Origin of Sunspots’, Astron. Astrophys. 319, L13.Google Scholar
  29. Ruzmaikin, A.: 1998, ‘Clustering of Emerging Flux’, Solar Phys. 1181, 1.Google Scholar
  30. Schüssler, M.: 1979, ‘Magnetic Buoyancy Revisited: Analytical and Numerical Results for Rising Flux Tubes’, Astron. Astrophys. 71, 79.Google Scholar
  31. Schruver, C. J. and Title, A. M.: 2000, ‘Active Regions Losing Their Moorings by Subsurface Reconnection’, Solar Phys. 181, 331.Google Scholar
  32. Solanki, S. K. and Fligger, M.: 1998, ‘Solar Irradiance Since 1874 Revisited’, Geophys. Res. Lett. 25, 341.Google Scholar
  33. Spruit, H.: 1977, ‘Heat Flow Near Obstacles in the Solar Convection Zone’, Solar Phys. 55, 3.Google Scholar
  34. Tomczyk, S., Schou, J., and Thompson, M. J.: 1995, ‘Measurement of the Rotation Rate in the Deep Solar Interior’, Astrophys. J. 448, L57.Google Scholar
  35. Vainshtein, S. I. and Rosner, R.: 1991, ‘On Turbulent Diffusion of Magnetic Fields and the Loss of Magnetic Flux from Stars’, Astrophys. J. 376, 199.Google Scholar
  36. Vyssotsky, A. N.: 1949, ‘Meddelanden Fran Lunds Astronomiska Observatorium Ser. II’, Historical Papers No. 22.Google Scholar
  37. Wiesenfeld, K. and Moss, F.: 1995, ‘Stochastic Resonance and the Benefits of Noise’, Nature 373, 33.Google Scholar
  38. Weiss, N. O.: 1997, Magnetoconvection. In Advances in the Physics of Sunspots, ASP Conf, Ser, Vol.118, pp. 21-33.Google Scholar
  39. Wilson, P. R.: 1984, Theories of Sunspot Structure and Evolution, in L. E. Cram and J. H. Thomas (eds), The Physics of Sunspots, Sacramento Peak Observatory, Sunspot, NM 88349, pp. 83-97.Google Scholar
  40. Zwaan, G.: 1978, ‘On the Appearance of Magnetic Flux in the Solar Photosphere’, Solar Phys. 60, 213.Google Scholar
  41. Zeldovich, Ya. B., Ruzmaikin, A. and Sokoloff, D. D.: 1983, Magnetic Fields in Astrophysics Gordon and Breach Publishers, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Alexander Ruzmaikin
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A

Personalised recommendations