Space Science Reviews

, Volume 95, Issue 1–2, pp 443–456

Viscous-type processes in the solar wind-magnetosphere interaction

  • Charles J. Farrugia
  • Fausto T. Gratton
  • Roy B. Torbert
Article

Abstract

A debate of long standing concerns the role viscous interactions play in magnetospheric dynamics. Is it minor or is it central to, e.g., drive the low latitude boundary layer on closed field lines and account for the substantial level of wave activity seen on the flanks? Newer data and theoretical considerations leave little doubt that viscous coupling is important. The Kelvin-Helmholtz instability is a major protagonist in fostering momentum transfer. Closer studies of the state of the flank magnetosphere will help to resolve the issue.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu, S.-I., Hones, E. W., Jr., Bame, S. J., Asbridge, J. R. and Lui, A. T.: 1973, ‘Magnetotail and Boundary Layer Plasmas at a Geocentric Distance of 18 RE: Vela 5 and 6 Observations’, J. Geophys. Res. 78, 7257.Google Scholar
  2. Bame, S. J., Anderson, R. C., Asbridge, J. R., Baker, D. N., Feldman, W. C., Gosling, J. T., Hones, W., Jr., McComas, D. J. and Zwick, R.: 1983, ‘Plasma Regions in the Deep Magnetotail: ISEE-3’, Geophys. Res. Lett. 10, 912.Google Scholar
  3. Braginkii, S. I.: 1965, in M. A. Leontovich (ed.), ‘Transport Processes in a Plasma’, Revs. of Plasma Physics, Vol. 1, Consultants Bureau, New York, p. 205.Google Scholar
  4. Chen, S.-H. and Kivelson, M. G.: 1993, ‘Nonsinusoidal Waves at the Earth's Magnetopause’, Geophys. Res. Lett. 20, 2699.Google Scholar
  5. Chen, S.-H., Kivelson, M. G., Gosling, J. T., Walker, R. J. and Lazarus, A. J.: 1993, ‘Anomalous Aspects of Magnetosheath Flow and the Shape of Oscillations of the Magnetopause During an Interval of Strongly Northward Interplanetary Magnetic Field’, J. Geophys. Res. 98, 5727.Google Scholar
  6. Cowley, S. W. H.: 1984, ‘Solar Wind Control of Magnetospheric Convection’, Achievements of the International Magnetospheric Study (IMS), ESA SP-217, Paris, p. 483.Google Scholar
  7. Dunlop, M.W., Balogh, A., Baumjohann, W., Haerendel, G., Fornacon, K.-H., Georgescu, E., Nakamura, R. and Kokubun, S.: 1999, ‘Dynamics and Local Boundary Properties of the Dawn-Side magnetopause Under Conditions Observed by Equator-S’, Ann. Geophysicae 17, 1535.Google Scholar
  8. Eastman, T. E., Hones, E. W., Jr., Bame, S. J. and Asbridge, J. R.: 1976, ‘The Magnetospheric Boundary Layer: Site of Plasma, Momentum and Energy Transfer From the Magnetosheath into the Magnetosphere’, Geophys. Res. Lett. 3, 685.Google Scholar
  9. Engebretson, M., Glassmeier, K.-H., Stellmacher, M., Hughes, W. J. and Lühr, H.: 1998, ‘The Dependence of High-Latitude Pc 5Wave Power on SolarWind Velocity and on the Phase of High-Speed Solar Wind Streams’, J. Geophys. Res. 103, 171.Google Scholar
  10. Farrugia, C. J., Gratton, F. T., Bender, L., Quinn, J. M., Torbert, R. B., Erkaev, N. V. and Biernat, H. K.: 1998b, in J. Moen et al. (eds), ‘Recent Work on the Kelvin-Helmholtz Instability at the Dayside Magnetopause and Boundary Layer’, Polar Cap Boundary Phenomena, Kluwer Academic Publishers, Dordrecht.Google Scholar
  11. Farrugia, C. J., Gratton, F. T., Bender, L., Biernat, H. K., Erkaev, N. V., Quinn, J. M., Torbert, R. B. and Dennisenko, V.: 1998a, ‘Charts of Joint Kelvin-Helmholtz and Rayleigh-Taylor Instabilities at the Dayside Magnetopause for Strongly Northward Interplanetary Magnetic Field’, J. Geophys. Res. 103, 6703.Google Scholar
  12. Farrugia, C. J., Gratton, F. T., Contin, J., Cocheci, C. C., Arnoldy, R. L., Ogilvie, K. W., Lepping, R. P., Zastenker, G. N., Nozdrachev, M. N., Fedorov, A., Sauvaud, J.-A., Steinberg, J. T. and Rostoker, G.: 2000, ‘Coordinated Wind, Interball/tail, and Ground Observations of Kelvin-Helmholtz Instability and Waves in the Near-Tail, Equatorial Magnetopause at Dusk: January 11, 1997’, J. Geophys. Res. 105, 7639.Google Scholar
  13. Hones, E. W., Jr., Asbridge, J. R., Bame, S. J., Montgomery, M. D., Singer, S. and Akasofu, S.-I.: 1972, ‘Measurements of Magnetotail Plasma Flow Made with Vela 4B’, J. Geophys. Res. 77, 5503.Google Scholar
  14. Kennel, C. F.: 1995, ‘Convection and Substorms’, International Series on Astron and Astrophysics, Oxford University Press, New York.Google Scholar
  15. Kivelson, M. G. and Chen, S.-H.: 1995, in P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds), ‘Surface Waves and instabilities and Their Possible Dynamical Consequences’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 257.Google Scholar
  16. Lotko, W. and Sonnerup, B. U. Ö.: 1995, in P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds), ‘The Low-Latitude Boundary Layer on Closed Field Lines’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 371.Google Scholar
  17. Miura, A.: 1984, ‘Anomalous Transport by Magnetohydrodynamic Kelvin-Helmholtz Instabilities in the Solar Wind-Magnetosphere Interaction’, J. Geophys. Res. 89, 801.Google Scholar
  18. Miura, A.: 1990, ‘Kelvin-Helmholtz Instability for Supersonic Shear Flow at the Magnetospheric Boundary’, Geophys. Res. Lett. 17, 749.Google Scholar
  19. Miura, A.: 1992, ‘Kelvin-Helmholtz Instability at the Magnetospheric Boundary: Dependence on the Magnetosheath Sonic Mach Number’, J. Geophys. Res. 97, 10,655.Google Scholar
  20. Paschmann, G.: 1997, ‘Observational Evidence for Transfer of Plasma Across the Magnetopausev’, Space Sci. Rev. 80, 217.Google Scholar
  21. Phan, T.-D., Larson, D., McFadden, J., Lin, R. P., Carlson, C., Moyer, M., Paulerena, K. I., Mc-Carthy, M., Parks, G. K., Réme, H., Sanderson, T. R. and Lepping, R. P.: 1997, ‘Low-Latitude Dusk Flank Magnetosheath, Magnetopause, and Boundary Layer for Low Magnetic Shear:Wind Observations’, J. Geophys. Res. 102, 19,883.Google Scholar
  22. Sandholt, P. E., Farrugia, C. J., Cowley, S. W. H., Denig, W. F., Lester, M., Moen, J. and Lybekk, B.: 1999, ‘Capture of Magnetosheath Plasma by the Magnetosphere During Northward IMF’, Geophys. Res. Lett. 26, 2833.Google Scholar
  23. Sckopke, N., Paschmann, G., Haerendel, G., Sonnerup, B.U.Ö., Bame, S. J., Forbes, T. G., Hones, Jr., E. W. and Russell, C. T.: 1981, ‘Structure of the Low Latitude Boundary Layer’, J. Geophys. Res. 86, 2099.Google Scholar
  24. Seon, J., Frank, L. A., Lazarus, A. J. and Lepping, R. P.: 1995, ‘Surface Waves on Tailward Flanks of the Earth's Magnetopause’, J. Geophys. Res. 100, 11,907.Google Scholar
  25. Song, P. and Russel, C. T.: 1992, ‘Model of the Formation of the Low-Latitude Boundary Layer for Strongly Northward Interplanetary Magnetic Field’, J. Geophys. Res. 97, 1411.Google Scholar
  26. Song, P., Holzer, T. E., Russell, C. T. and Wang, Z.: 1994, ‘Modeling the Low-Latitude Boundary Layer with Reconnection Entry’, Geophys. Res. Lett. 21, 625.Google Scholar
  27. Song, P., DeZeeuw, D. L., Gombosi, T. I., Groth, C. P. T. and Powell, K. G.: 1999, ‘A Numerical Study of Solar Wind-Magnetosphere Interaction for Northward Interplanetary Magnetic Field’, J. Geophys. Res. 104, 28361.Google Scholar
  28. Sonnerup, B. U. Ö.: 1980, ‘Theory of the Low-Latitude Boundary Layer’, J. Geophys. Res. 85, 1980.Google Scholar
  29. Treumann, R. A.: 1997, ‘Theory of Super-Diffusion for the Magnetopause’, Geophys. Res. Lett. 24, 1727.Google Scholar
  30. Treumann, R. A., LaBelle, J. and Bauer, T. M.: 1995, in P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds), ‘Diffusion at the Magnetopause: The Observational Viewpoint’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 331.Google Scholar
  31. Winske, D., Thomas, V. A. and Omidi, N.: 1995, in P. Song, B. U. Ö Sonnerup, and M. F. Thomsen (eds), ‘Diffusion at the Magnetopause: A Theoretical Perspective’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 321.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Charles J. Farrugia
    • 1
  • Fausto T. Gratton
    • 2
  • Roy B. Torbert
    • 1
  1. 1.Space Science CenterUniversity of New HampshireDurhamU.S.A
  2. 2.Insituto de Física del Plasma, CONICET andUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations