Advertisement

Water, Air, and Soil Pollution

, Volume 116, Issue 1–2, pp 311–322 | Cite as

Effects of Tropospheric O3 on Trembling Aspen and Interaction with Co2: Results from an O3-Gradient and a Face Experiment

  • D.F. Karnosky
  • B. Mankovska
  • K. Percy
  • R.E. Dickson
  • G.K. Podila
  • J. Sober
  • A. Noormets
  • G. Hendrey
  • M.D. Coleman
  • M. Kubiske
  • K.S. Pregitzer
  • J.G. Isebrands
Article

Abstract

Over the years, a series of trembling aspen (Populus tremuloides Michx.) clones differing in O3 sensitivity have been identified from OTC studies. Three clones (216 and 271[(O3 tolerant] and 259 [O3 sensitive]) have been characterized for O3 sensitivity by growth and biomass responses, foliar symptoms, gas exchange, chlorophyll content, epicuticular wax characteristics, and antioxidant production. In this study we compared the responses of these same clones exposed to O3 under field conditions along a natural O3 gradient and in a Free-Air CO2 and O3 Enrichment (FACE) facility. In addition, we examined how elevated CO2 affected O3 symptom development. Visible O3 symptoms were consistently seen (5 out of 6 years) at two of the three sites along the O3 gradient and where daily one-hour maximum concentrations were in the range of 96 to 125 ppb. Clonal differences in O3 sensitivity were consistent with our OTC rankings. Elevated CO2 (200 ppm over ambient and applied during daylight hours during the growing season) reduced visible foliar symptoms for all three clones from 31 to 96% as determined by symptom development in elevated O3 versus elevated O3 + CO2 treatments. Degradation of the epicuticular wax surface of all three clones was found at the two elevated O3 gradient sites. This degradation was quantified by a coefficient of occlusion which was a measure of stomatal occlusion by epicuticular waxes. Statistically significant increases in stomatal occlusion compared to controls were found for all three clones and for all treatments including elevated CO2, elevated O3, and elevated CO2 + O3. Our results provide additional evidence that current ambient O3 levels in the Great Lakes region are causing adverse effects on trembling aspen. Whether or not elevated CO2 in the future will alleviate some of these adverse effects, as occurred with visible symptoms but not with epicuticular wax degradation, is unknown.

ozone carbon dioxide FACE aspen greenhouse gases climate change gradients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, J.E., Lucier, A., Johnson, A.H., Brooks, R.T., Kamosky, D.F. and Dunn, R.H.: 1991, NAPAP State of Science/Technology Report 16.Google Scholar
  2. Barnes, J.D. and Wellburn, A.R.: 1998, In: L.L. De Kok and I. Stulen (Eds.), Responses of plant metabolism to air pollution. Backhuys Publishers, Leiden, The Netherlands. pp. 147–164.Google Scholar
  3. Berrang, P.C., Karnosky, D.F. and Bennett, J.P.: 1989, Can. J. For. Res. 19, 519–522.Google Scholar
  4. Berrang, P.C., Karnosky, D.F. and Bennett, J.P.: 1991, Can. J. For. Res. 21, 1091–1097.Google Scholar
  5. Berrang, P.C., Karnosky, D.F., Mickler, R.A. and Bennett, J.P.: 1986, Can. J. For. Res. 16, 1214–1216.Google Scholar
  6. Ceulemans, R. and Mosseau, M.: 1994, New Phytol. 127, 425–446.Google Scholar
  7. Chappelka, A.H. and Samuelson, L. J.: 1998, New Phytol. 139, 91–108.Google Scholar
  8. Coleman, M.D., Dickson, R.E. and Isebrands, J.G.: 1999, Physiol. Plant. (In Press).Google Scholar
  9. Coleman, M.D., Dickson, R.E., Isebrands, J.G. and Karnosky, D.F.: 1995a, Tree Physiol. 15, 593–604.Google Scholar
  10. Coleman, M.D., Dickson, R.E., Isebrands, J.G. and Karnosky, D.F.: 1995b, Tree Physiol. 15, 585–592.Google Scholar
  11. Coleman, M.D., Dickson, R.E., Isebrands, J.G. and Karnosky, D.F.: 1996, Tree Physiol. 16, 145–152.Google Scholar
  12. Curtis, P.S., Vogel, C.S., Pregitzer, K.S., Zak, D.R. and Teeri, J.A.: 1995, New Phytol. 129, 253–263.Google Scholar
  13. Dann, T. and Sumners, P.(Editors): 1997, Canadian 1996 NOx/VOC Science assessment. Report of the Data Analysis Working Group. 259 pp.Google Scholar
  14. Gagnon, Z.E., Karnosky, D.F., Dickson, R.E. and Isebrands, J.G.: 1992, Amer. J. Bot. 79, 107.Google Scholar
  15. Heagle, A.S., Reinert, R.A. and Miller, J.E.: 1996, J. Environ. Qual. 25, 273–278.Google Scholar
  16. Hendrey, G.R., Lewin K., Nagy, J. and Ellsworth, D.: 1998, Global Change Biol. 5, 101–105.Google Scholar
  17. Huttunen, S.: 1996, In: K.E. Percy, J.N. Cape, R. Jagels and C.J. Simpson (Eds.) Air Pollutants and the Leaf Cuticle, NATO ASI Series, Vol. G36, Heidelberg. pp. 81–96.Google Scholar
  18. Hogsett, W.E., Weber, J.E., Tingey, D., Herstrom, A., Lee, E.H. and Laurence, J.A.: 1997, Environ. Manage. 21, 105–120.Google Scholar
  19. Karnosky, D. F.: 1976, Can. J. For. Res. 6, 166–169.Google Scholar
  20. Karnosky, D. F.: 1977, Can. J. For. Res. 7, 435–436.Google Scholar
  21. Karnosky, D.F., Gagnon, Z.E. and Reed, D.D.: 1992a, Can. J. For. Res. 22, 1785–1788.Google Scholar
  22. Karnosky, D.F., Gagnon, Z.E., Reed, D.D. and Witter, J.A.: 1992b, Water, Air, and Soil Pollut. 62, 189–199.Google Scholar
  23. Karnosky, D.F., Pregitzer, K.S., Kubiske, M., Reed, D.D., Isebrands, J.G., Lindroth, R.L., Zak, D.R., Host, G.E., Hendrey, G.: 1995, U.S. Department of Energy, Program for Ecosystem Research, Research Summaries 1995. pp. 28–29.Google Scholar
  24. Karnosky, D.F., Gagnon, Z.E., Dickson, R.E., Coleman, M.D., Lee, E.H. and Isebrands, J.G.: 1996, Can. J. For. Res. 16, 23–27.Google Scholar
  25. Karnosky, D.F., Podila, G.K., Gagnon, Z.E., Pechter, P., Akkapeddi, A., Sheng, Y., Riemenschneider, D.E., Coleman, M.D., Dickson, R.E. and Isebrands, J.G.: 1998, Chemos. 36, 807–812.Google Scholar
  26. Keeling, C.D., Whort, T.P., Wahlen, M. and van der Plicht, J.: 1995, Nature 375, 666–670.Google Scholar
  27. Kubiske, M.E., Pregitzer, K.S., Mikan, C.J., Zak, D.R., Maziasz, J.L. and Teeri, J.A.: 1997, Oecologia 110, 329–336.Google Scholar
  28. Kull, O., Sober, A., Coleman, M.D., Dickson, R.E., Isebrands, J.G., Gagnon, Z. and Karnosky, D.F.: 1996, Can.J. For. Res. 16, 639–648.Google Scholar
  29. Larson, P.R. and Isebrands, J.G.: 1971, Can. J. For. Res. 1, 1–11.Google Scholar
  30. Mohnen, V.A., Goldstein, W. and Wang, W.C.: 1993, Air and Waste 43, 1332–1344.Google Scholar
  31. Myslivec, V.: 1957, Czechoslovak Academy of Science. State Agricultural Publishing House. No. 654. Prague, Czechoslovakia, pp. 486–495.Google Scholar
  32. Olsyk, D.M., Bytnerowicz, A., Kats, G., Dawson, P.J., Wolf, J. and Thompson, C.R.: 1986, J. Environ. Qual. 15, 417–422.Google Scholar
  33. Percy, K.E., Krause, C.F. and Jensen, K.F.: 1990, Can. J. For. Res. 20, 117–120.Google Scholar
  34. Percy, K.E., Karnosky, D.F. and Mankovska, B.: 1998, Proc. 18th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. Edinburgh. p. 98.Google Scholar
  35. Sheng, Y., Podila, G.K. and Karnosky, D.F.: 1997, For. Gen. 4, 25–33.Google Scholar
  36. Smelko, S.: 1991, Technical University, Forestry Faculty, Technical University Publishing. Zvolen, Slovakia. pp.179–183.Google Scholar
  37. Treshow, M.: 1970, Environ. Pollut. 1,155–161.Google Scholar
  38. Treshow, M. and Stewart, D.: 1973, Biol. Conserv. 5, 209–214.Google Scholar
  39. Volin, J.C. and Reich, P.B.: 1996, Physiol. Plant. 97, 674–684.Google Scholar
  40. Volin, J.C., Reich, P.B. and Givnish, T.J.: 1998, New Phytol. 138, 315–325.Google Scholar
  41. Walklate, P.J., Xu, Z.G. and McLeod, A.B.: 1996, Global Change Biol. 2: 75–78.Google Scholar
  42. Wang, D., Karnosky, D.F., Bormann, F.H.: 1985, Can. J. For. Res. 16, 47–55.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • D.F. Karnosky
    • 1
  • B. Mankovska
    • 2
  • K. Percy
    • 3
  • R.E. Dickson
    • 4
  • G.K. Podila
    • 5
  • J. Sober
    • 1
  • A. Noormets
    • 1
  • G. Hendrey
    • 6
  • M.D. Coleman
    • 7
  • M. Kubiske
    • 8
  • K.S. Pregitzer
    • 1
  • J.G. Isebrands
    • 4
  1. 1.School of Forestry and Wood ProductsMichigan Technological UniversityHoughton
  2. 2.Forest Research InstituteZvolenSlovakia
  3. 3.Natural Resources Canada, Canadian Forest ServiceFrederictonCanada
  4. 4.U.S. Forest Service, North Central Forest Experiment Station, Forestry Sciences LaboratoryRhinelander
  5. 5.Department of Biological SciencesMichigan Technological UniversityHoughton
  6. 6.Biosystems and Process Sciences DivisionBrookhaven National LaboratoryUpton
  7. 7.USDA Forest Service, Savannah River InstituteNew Ellenton
  8. 8.Department of ForestryMississippi State University

Personalised recommendations