Space Science Reviews

, Volume 90, Issue 1–2, pp 33–43 | Cite as

Cometary Deuterium

  • Roland Meier
  • Tobias C. Owen


Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar \(\left( {{{\text{D}} \mathord{\left/ {\vphantom {{\text{D}} {\text{H}}}} \right. \kern-\nulldelimiterspace} {\text{H}}}} \right)_{{\text{H}}_{\text{2}} {\text{O}}} \) ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary \(\left( {{{\text{D}} \mathord{\left/ {\vphantom {{\text{D}} {\text{H}}}} \right. \kern-\nulldelimiterspace} {\text{H}}}} \right)_{{\text{H}}_{\text{2}} {\text{O}}} \) ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H.

Deuterium Origin Gas Composition Planets Water HCN Interstellar Medium Comets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A'Hearn, MF, and Feldman, PD: 1985, In Ices in the Solar System(Klinger, J., Benest, D., and Smoluchowski, R., Eds.), pp. 463–471, D. Reidel Publishing Company, Dordrecht (USA).Google Scholar
  2. A'Hearn, MF, Schleicher, DG, and West, RA: 1985, Astrophys. J. 297, 826–836.CrossRefADSGoogle Scholar
  3. Aikawa, Y., Umebayashi, T., Nakano, T., and Miyama, SM: 1997. Astrophys. J. Lett. 486, L51–L54.CrossRefADSGoogle Scholar
  4. Balsiger, H., Altwegg, K., and Geiss, J.: 1995, J. Geophys. Res. 100, 5827–5834.CrossRefADSGoogle Scholar
  5. Bockelée-Morvan, D., Gautier, D., Lis, DC, Young, K., Keene, J., Phillips, T., Owen, T., Crovisier, J., Goldsmith, PF, Bergin, EA, Despois, D., and Wootten, A.: 1998, Icarus 133, 147–162.CrossRefADSGoogle Scholar
  6. Brown, PD, and Millar, TJ: 1989, Mon. Not. R. Astron. Soc. 237, 661–671.ADSGoogle Scholar
  7. Coustenis, A., Salama, A., Lellouch, E., Encrenaz, Th., de Graaw, Th., Bjoraker, GL, Samuelson, R.E., Gautier, D., Feuchgruber, H., Kessler, MF, and Orton, GS: 1998, Bul. Am. Astron. Soc. 30, 1060.ADSGoogle Scholar
  8. Crovisier, J., Bockelée-Morvan, D., Colom, P., Despois, D., and Paubert, G.: 1993, Astron. Astrophys. 269, 527–540.ADSGoogle Scholar
  9. Crovisier, J., Leech, K., Bockelée-Morvan, D., Brooke, TY, Hanner, MS, Altieri, B., Keller, HU, and Lellouche, E.: 1997, Science 275, 1904–1907.CrossRefADSGoogle Scholar
  10. Crovisier, J.: 1998, Bul. Am. Astron. Soc. 30, 1059–1060.ADSGoogle Scholar
  11. Delsemme, AH: 1998, Planet Space Sci., in press.Google Scholar
  12. Deloule, E., Doukhan, J.-P., and Robert, F.: 1997, Proc. Lunar Planet. Sci. Conf. 28th, 291–292.Google Scholar
  13. Duncan, M., Quinn, T., and Tremaine S.: 1987, Astron. J. 94, 1330–1338.CrossRefADSGoogle Scholar
  14. Eberhardt, P., Meier, R., Krankowsky, D., and Hodges, RR: 1994, Astron. Astrophys. 288, 315–329.ADSGoogle Scholar
  15. Eberhardt P., Reber, M., Krankowsky, D., and Hodges, RR: 1995, Astron. Astrophys. 302, 301–316.Google Scholar
  16. Eberhardt, P.: 1999, In Proc. IAU Colloq. 168, Cometary Nuclei in Space and Time(A'Hearn, MF, Ed.), Astron. Soc. Pacific Conf. Ser., in press.Google Scholar
  17. Epstein, RI, Lattimer, JM, and Schramm, DN: 1976, Nature 263, 198–202.CrossRefADSGoogle Scholar
  18. Fegley, B., Jr., and Prinn, RG: 1989, In The formation and evolution of planetary systems(Weaver, H.A., and Danly, L., Eds.), pp. 171–211, Cambridge U. Press, Cambridge (UK).Google Scholar
  19. Feuchtgruber, H., Lellouch, E., Bézard, B., Encrenaz, Th., de Graaw, Th., and Davis, GR: 1999, Astron. Astrophys. 341, L17–L21.ADSGoogle Scholar
  20. Gautier D. and Morel, P.: 1997, Astron. Astrophys. 323, L9–L12.ADSGoogle Scholar
  21. Gautier, D.: 1999, In Planetary systems: The long view(Celnikier, L., Ed.), in press, Blois (France).Google Scholar
  22. Geiss, J., and Reeves, H.: 1981, Astron. Astrophys. 93, 189–199.ADSGoogle Scholar
  23. Geiss, J.: 1993, In Origin and evolution of the elements(Prantzos, N., Vangioni-Flam, E., and Cassé, M., Eds.), pp. 87–106, Cambridge Univ. Press, Cambridge (UK).Google Scholar
  24. Greenberg, M., and Li, A.: 1999, Space Sci. Rev., this volume.Google Scholar
  25. Griffith, CA, and Zahnle, K.: 1995, J. Geophys. Res. 100, 16 907–16 922.CrossRefADSGoogle Scholar
  26. Griffin, MJ, et al.: 1996, Astron. Astrophys. 315, L389–L392.ADSGoogle Scholar
  27. Grinspoon, DH and Lewis J.S.: 1988, Icarus 72, 430–436.CrossRefADSGoogle Scholar
  28. Hubbard, WB, and MacFarlane, JJ: 1980, Icarus 127, 307–318.Google Scholar
  29. Hubbard, WB, Podolak, M., and Stevenson, D.J: 1995, In Neptune and Triton(Cruikshank, DP, Ed.), pp. 109–140, U. of Arizona Press, Tucson (USA).Google Scholar
  30. Irvine, WM, Bergin, EA, Dickens, JE, Jewitt, D., Lovell, AJ, Matthews, HE, Schloerb, FP, and Senay, M.: 1998, Nature 393, 547–550.CrossRefADSGoogle Scholar
  31. Jessberger, E.: 1999, Space Sci. Rev., this volume.Google Scholar
  32. Klinger, J., Eich, G., Bischoff, A., Jo´o, F., Kochan, H., Roessler, K., Stichler, W., and St¨oeffler, D.: 1989, Adv. Space Res. 9, (3), 123–125.CrossRefADSGoogle Scholar
  33. Krasnopolsky, VA, Mumma, MJ, Abbott, M., Flynn, BC,Meech, KJ, Yeomans, DK, Feldman, P.D., and Cosmovici, CB: 1997, Science 277, 1488–1491.CrossRefADSGoogle Scholar
  34. Lécluse, C., and Robert, F.: 1994, Geochim. Cosmochim. Acta 58, 2927–2939.CrossRefADSGoogle Scholar
  35. Lunine, JI, Engle, S., Riszk, B., and Horanyi, M.: 1991, Icarus 94, 333–344.CrossRefADSGoogle Scholar
  36. Mahaffy, PR, Donahue, TM, Atreya, SK, Owen, TC, and Niemann, HB: 1998. Space Sci. Rev. 84, 251–263.CrossRefADSGoogle Scholar
  37. Meier, R., Owen, TC, Matthews, HE, Jewitt, DC, Bockelée-Morvan, D., Biver, N., Crovisier, J., and Gautier, D.: 1998a, Science 279, 842–844.CrossRefADSGoogle Scholar
  38. Meier, R., Owen, TC, Jewitt, DC, Matthews, HE, Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., and Gautier, D.: 1998b, Science 279, 1707–1710.CrossRefADSGoogle Scholar
  39. Meier, R., Wellnitz, D., Kim, SJ, and A'Hearn, MF: 1998c, Icarus 136, 268–279.Google Scholar
  40. Millar, TJ, Bennett, A., and Herbst, E.: 1989, Astrophys. J. 340, 906–920.CrossRefADSGoogle Scholar
  41. Mumma, MJ, Weissman, PR, and Stern, SA: 1993, In Protostars and planets III, (Levy, E.H, and Lunine, JI, Eds.), pp. 1177–1252, U. of Arizona Press, Tucson (USA).Google Scholar
  42. Mumma, MJ, DiSanti, MA, Dello Russo, N., Fomenkova, M., Magee-Sauer, K, Kaminski, CD, and Xie, DX: 1996, Science 272, 1310–1314.ADSGoogle Scholar
  43. Notesco, G., Laufen, G., and Bar-Nun, A.: 1997, Icarus 125, 471–473.CrossRefADSGoogle Scholar
  44. Owen, TC, and Bar-Nun, A.: 1995, Icarus 116, 215–226.CrossRefADSGoogle Scholar
  45. Owen, TC: 1997, In From stardust to planetesimals(Pendleton, YJ, and Tielens, AGG.M., Eds.), pp. 435–450, Astron. Sci. Pacific Public. 122, San Francisco (USA).Google Scholar
  46. Podolak, M., Weizman, A., and Marley, M.: 1995, Planet. Space Sci. 43, 1517–1522.CrossRefADSGoogle Scholar
  47. Pringle, JE: 1981, Ann. Rev. Astron. Astrophys. 19, 137–162.CrossRefADSGoogle Scholar
  48. Schleicher, DG, and A'Hearn, MF: 1986, In New insights in astrophysics. Eight years of UV astronomy with IUE(Rolfe, EJ, Ed.), pp. 31–33, ESA SP-263, ESA, Paris (France).Google Scholar
  49. Wagoner, RV, Fowler, WA, and Hoyle, F.: 1967, Astrophys. J. 148, 3–49.CrossRefADSGoogle Scholar
  50. Willacy, K., Klahr, HH, Millar, TJ, and Henning, Th.: 1998, Astron. Astrophys. 338, 995–1005.ADSGoogle Scholar
  51. Williams, TL, Adams, NG, Lucia, MB, Herd, Ch.R., and Geoghegan, M.: 1996. Mon. Not. R. Astron. Soc. 282, 413–420.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Roland Meier
  • Tobias C. Owen

There are no affiliations available

Personalised recommendations