Geometriae Dedicata

, Volume 82, Issue 1–3, pp 285–323 | Cite as

Integral Geometry of Tame Sets

  • Ludwig Bröcker
  • Martin Kuppe
Article

Abstract

Curvature measures on certain tame Whitney-stratified sets are defined as coefficients of modified volume-growth polynomials. Stratified Morse theory yields alternative descriptions of these curvature measures for tame (possibly highly singular) sets. From this we obtain a generalized Gauss–Bonnet formula and various kinematic formulas. Finally, for O-minimal sets it is shown that curvature measures only depend on the inner metric.

integral geometry tame stratifications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al]
    Allendoerfer, C.: The Euler number of a Riemann manifold, Amer. J. Math. 62 (1940), 243–248.Google Scholar
  2. [Al-We]
    Allendoerfer, C. and Weil, A.: The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129.Google Scholar
  3. [Ba]
    Banchoff, T.: Critical points and curvature for embedded polyhedra, J. Differential Geom. 1 (1967), 245–256.Google Scholar
  4. [Bla]
    Blaschke, W.: Vorlesungen über Integralgeometrie, Teubner-Verlag, Leipzig, Berlin, 1935.Google Scholar
  5. [C-M-S1]
    Cheeger, J., Müller, W. and Schrader, R.: On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984), 405–454.Google Scholar
  6. [C-M-S2]
    Cheeger, J., Müller, W. and Schrader, R.: Kinematic and tube formulas for piecewise linear spaces, Indiana Univ. Math. J. 35(4) (1986), 737–754.Google Scholar
  7. [Chern1]
    Chern, S.-S.; A simple intrinsic proof for the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944), 747–752.Google Scholar
  8. [Chern2]
    Chern, S.-S.: On the kinematic formula in integral geometry, J. Math.Mech. 16 (1966), 101–118.Google Scholar
  9. [v.d.D.]
    van den Dries, L.: Tame Topology and O-minimal Structures, London Math. Soc. Lecture Notes Ser. 248, Cambridge Univ. Press, 1998.Google Scholar
  10. [v.d.D.-Mil]
    Van den Dries, L. and Miller, C.: Geometric categories and O-minimal structures, Duke Math. J. 84 (1996), 497–540.Google Scholar
  11. [Fed1]
    Federer, H.: Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.Google Scholar
  12. [Fed2]
    Federer, H.: Geometric Measure Theory, Springer-Verlag, Berlin, 1969.Google Scholar
  13. [Fer]
    Ferus, D.: Totale Absolutkrümmung in Differentialgeometrie und-topologie, Lecture Notes in Math., Springer, New York, 1968.Google Scholar
  14. [Fu1]
    Fu, J. H. G.: Curvature measures and generalized Morse theory, J. Differential Geom. 30 (1989), 619–642.Google Scholar
  15. [Fu2]
    Fu, J. H. G.: Curvature measures of subanalytic sets, Amer. J. Math. 116(4) (1994), 819–880.Google Scholar
  16. [Gi]
    Gilkey, P.: Invariance Theory, the Heat Equation and the Atiyah Singer Equation, Publish or Perish, New York, 1984.Google Scholar
  17. [Go-MP]
    Goresky, M. and MacPherson, R.: Stratified Morse Theory, Springer-Verlag, Berlin, 1988.Google Scholar
  18. [Had]
    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957.Google Scholar
  19. [Hamm]
    Hamm, H.: On stratified Morse theory, Topology 38 (1999), 427–438.Google Scholar
  20. [Hardt]
    Hardt, R.: Topological properties of subanalytic sets, Trans. Amer. Math. Soc. 211 (1975), 57–70.Google Scholar
  21. [Miln1]
    Milnor, J.: Morse Theory, Ann. of Math. Studies, 51, Princeton Univ. Press, Princeton, N.J., 1969.Google Scholar
  22. [Miln2]
    Milnor, J.: Euler Characteristic and Finitely Additiv Steiner Measures, collected papers vol. 1, 213–234, Publish or Perish Inc., Boston, 1994.Google Scholar
  23. [Mink]
    Minkowski, H.: Theorie der konvexen Körper, Gesammelte Abh. 2, Leipzig, 1911, reprinted by Chelsea, pp. 131–229, 1967.Google Scholar
  24. [San1]
    Santaló, L.: Geometria Integral 15. Fórmula fundamental de la media cinemática para cilindros y planos paralelos móviles, Abh. Math. Sem. Univ. Hamburg 12, 1937.Google Scholar
  25. [San2]
    Santaló, L.: Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Mass., 1976.Google Scholar
  26. [Schn-We]
    Schneider, R. and Weil,W.: Integralgeometrie, Teubner-Verlag, Stuttgart, 1992.Google Scholar
  27. [Shio]
    Shiota, M.: Geometry of Subanalytic and Semialgebraic Sets, Birkhäuser, Boston, 1997.Google Scholar
  28. [Spiv]
    Spivak, M.: Differential Geometry, Publish or Perish, Boston, 1975.Google Scholar
  29. [Thom]
    Thom, R.: Ensembles et morphismes stratifiés, Bull. Amer.Math. Soc. 75 (1969), 240–284.Google Scholar
  30. [Weyl]
    Weyl, H.: On the volume of tubes, Amer. J. Math. 61 (1939), 461–472.Google Scholar
  31. [Whit]
    Whitney, H.: Tangents to an analytic variety, Ann. of Math. 81 (1965), 496–549.Google Scholar
  32. [Zae]
    Zähle, M.: Curvature and currents for unions of sets with positive reach, Geom. Dedicata 23 (1987), 155–171.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ludwig Bröcker
    • 1
  • Martin Kuppe
    • 2
  1. 1.Mathematisches InstitutMünsterGermany
  2. 2.Mathematisches InstitutMünsterGermany

Personalised recommendations