Geometriae Dedicata

, Volume 82, Issue 1–3, pp 285–323

Integral Geometry of Tame Sets

  • Ludwig Bröcker
  • Martin Kuppe
Article

Abstract

Curvature measures on certain tame Whitney-stratified sets are defined as coefficients of modified volume-growth polynomials. Stratified Morse theory yields alternative descriptions of these curvature measures for tame (possibly highly singular) sets. From this we obtain a generalized Gauss–Bonnet formula and various kinematic formulas. Finally, for O-minimal sets it is shown that curvature measures only depend on the inner metric.

integral geometry tame stratifications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ludwig Bröcker
    • 1
  • Martin Kuppe
    • 2
  1. 1.Mathematisches InstitutMünsterGermany
  2. 2.Mathematisches InstitutMünsterGermany

Personalised recommendations