Space Science Reviews

, Volume 92, Issue 1–2, pp 225–236 | Cite as

On The 53Mn Heterogeneity In The Early Solar System

  • Alexander Shukolyukov
  • Günter W. Lugmair


It is well established that the prolonged and thorough mixing of numerous nucleosynthetic components that constitutes the matter in the solar nebula resulted in an essential isotopic homogeneity of the solar system material. This may or may not be true for the short-lived radionuclides which were injected into or formed within the solar nebula just prior to or during solar system formation. Distinguishing between their heterogeneous or homogeneous distribution is important because the short- lived radionuclides are now widely used for the relative chronology of various objects and processes in the early solar system and as constraints for models of nucleosynthesis. The recent studies of the 53Mn-53Cr isotope system (half life of 53Mn is 3.7 Ma) in various solar system objects have shown that the relative abundance of radiogenic 53Cr is consistent with essentially homogeneous distribution of 53Mn in the asteroid belt. Thus, the relative 53Mn-53Cr chronometer can be directly used for dating samples which originated in the asteroid belt. Importantly, however, all meteorite groups studied so far indicate a clear excess of 53Cr as compared to Earth and to a lunar sample, which exhibits also a terrestrial 53Cr/52Cr ratio. The results from the Martian (SNC) meteorites show that their 53Cr excesses are less than half of those found in the asteroid belt bodies. Thus, the characteristic 53Cr/52Cr ratio of Mars is intermediate between that of the Earth-Moon system and those of the other meteorites. If these 53Cr variations are viewed as a function of the heliocentric distance, the radial dependence of the relative abundances of radiogenic 53Cr is indicated. This observed gradient can be explained by either an early, volatility controlled, Mn/Cr fractionation within the nebula or by an initial radial heterogeneous distribution of 53Mn. Although model calculations of the Mn/Cr ratios in the bulk terrestrial planets seem to be inconsistent with the volatility driven scenario, the precision of these calculations is inadequate for eliminating this possibility. In contrast, recent studies of the 53Mn-53Cr system in the enstatite chondrites indicate that, while their bulk Mn/Cr ratios are essentially the same as in ordinary chondrites, the 53Cr excess in bulk enstatite chondrites is three times lower than that in the bulk ordinary chondrites. This difference cannot be explained by a Mn/Cr fractionation and, thus, strongly suggests that a radial heterogeneous distribution of 53Mn must have existed in at least the early inner solar system. Using the observed gradient and the 53Cr/52Cr ratio of the bulk enstatite chondrites, their parent body(ies) formed at ∼1.4 AU or somewhat closer to the Sun.


Solar System Heliocentric Distance Parent Body Solar Nebula Carbonaceous Chondrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allègre, C. J., Poirier, J.-P., Humler, E., and Hofmann, A. W.: 1995, 'The Chemical Composition of the Earth', Earth Planet Sci. Lett. 134, 515–526.CrossRefADSGoogle Scholar
  2. Anders, E.: 1988, 'Circumstellar Material in Meteorites: Noble Gases, Carbon and Nitrogen', in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Univ. Arizona Press (UAP), Tucson, pp. 927–955.Google Scholar
  3. Baedecker, P.A., and Wasson, J. T.: 1975, 'Elemental Fractionation Among Enstatite Chondrites', Geochim. Cosmochim. Acta 39, 735–765.CrossRefADSGoogle Scholar
  4. Bell, J. F., Davis, D.R., Hartmann, W.K., and Gaffey, M. J.: 1989, 'Asteroids: The Big Picture', in R. P. Binzel, T. Gehrels, M. S. Matthews (eds.), Asteroids II, UAP, pp. 921–945.Google Scholar
  5. Bogdanovski, O., Shukolyukov, A., and Lugmair, G.W.: 1997, '53Mn-53Cr Isotope System in the Divnoe Meteorite', Meteoritics Planet. Sci. 32, A16–A17.ADSGoogle Scholar
  6. Cassen, P., and Woolum, D. S.: 1997, 'Nebular Fractionation and Mn-Cr Systematics', Lunar. Planet. Sci. XXVIII, 211–212.Google Scholar
  7. Clayton, D.D., and Jin, L.: 1995, 'A New Interpretation of 26Al inMeteoritic Inclusions', Astrophys. J. 451, L87–L91.ADSGoogle Scholar
  8. Drake, M. J., Newsom, H. E., Capobianco, C. J.: 1989, 'V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the Origin of the Moon: Experimental Studies', Geochim. Cosmochim. Acta 53, 2101–2111.CrossRefADSGoogle Scholar
  9. Dreibus, G., and Wänke, H.: 1979, 'On the Chemical Composition of the Moon and the Eucrite Parent Body and a Comparison With the Composition of the Earth, the Case of Mn, Cr and V', Lunar. Planet. Sci. X, 315–316.ADSGoogle Scholar
  10. Dreibus, G., and Wänke, H.: 1980, 'The Bulk Composition of the Eucrite Parent Asteroid and its Bearing on Planetary Evolution', Z. Naturforsch. 35 a, 204–216.ADSGoogle Scholar
  11. Grimm, R. E., and McSween, H.Y., Jr.: 1993, 'Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating', Science 259, 653–655.ADSGoogle Scholar
  12. Goarant, F., Guyot, F., Peyronneau, J., and Poirier, J.-P.: 1992, 'High-pressure and High-temperature Reactions Between Silicates and Liquid Iron Alloys in the Diamond Anvil Cell Studied by Analytical Electron Microscopy', J. Geophys. Res. 97, 4477–4487.ADSCrossRefGoogle Scholar
  13. Hutcheon, I.D., and Jones, R.H.: 1995, 'The 26Al-26Mg Record of Chondrules: Clues to Nebular Chronology', Lunar. Planet. Sci. XXVI, 647–648.ADSGoogle Scholar
  14. Lee, D.-C., and Halliday, A.N.: 1997, 'Core Formation on Mars and Differentiated Asteroids', Nature 388, 854–857.CrossRefADSGoogle Scholar
  15. Lee, D.-C., and Halliday, A.N.: 1998, 'Tungsten Isotopes, the Initial 182Hf/180Hf of the Solar System and the Origin of Enstatite Chondrites', Lunar. Planet. Sci. XXIX, 1416.Google Scholar
  16. Lee, T.: 1988, 'Implications of Isotopic Anomalies for Nucleosynthesis', in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, UAP, pp. 1063–1089.Google Scholar
  17. Lee, T., Papanastassiou, D.A., and Wasserburg, G. J.: 1976, 'Demonstration of 26Mg Excess in Allende and Evidence for 26Al', Geophys. Res. Lett. 3, 109–112.ADSGoogle Scholar
  18. Lee, T., Shu, F.H., Shang, H., Glassgold, A. E., and Rehm, K. E.: 1998, 'Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites', Astrophys. J. 506, 898–912.CrossRefADSGoogle Scholar
  19. Lugmair, G.W., and Shukolyukov, A.: 1998, 'Early Solar System Timescales According to 53Mn-53Cr Systematics', Geochim. Cosmochim Acta 62, 2863–2886.CrossRefADSGoogle Scholar
  20. Palme, H., Larimer, J.W., and Lipschutz, M. E.: 1988, 'Moderately Volatile Elements', in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, UAP, pp. 436–461.Google Scholar
  21. Papanastassiou, D.A.: 1986, 'Chromium Isotopic Anomalies in the Allende Meteorite', Astrophys. J. 308, L27–L30.CrossRefADSGoogle Scholar
  22. Podosek, F.A., Ott, U., Brannon, J.C., Neal, C.R., Bernatowicz, T. J., Swan, P., and Mahan, S. E.: 1997, 'Thoroughly Anomalous Chromium in Orgueil', Meteoritics and Planet. Sci. 32, 617–627.ADSCrossRefGoogle Scholar
  23. Rotaru, M., Birck, J.-L., and Allègre, C. J.: 1992, 'Clues to Early Solar System History From Chromium Isotopes in Carbonaceous Chondrites', Nature 358, 465–470.CrossRefADSGoogle Scholar
  24. Russel, S.S., Srinivasan, G., Huss, G.R., Wasserburg, G.J., and MacPherson, G.J.: 1996, 'Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales', Science 273, 757.ADSGoogle Scholar
  25. Shu, F.H., Shang, H., and Lee, T.: 1996, 'Toward an Astrophysical Theory of Chondrites', Science 271, 1545–1552.ADSGoogle Scholar
  26. Shukolyukov, A., and Lugmair, G.W.: 1998a, 'Isotopic Evidence for the Cretaceous-Tertiary Impactor and its Type', Science 282, 927–929.CrossRefADSGoogle Scholar
  27. Shukolyukov, A., and Lugmair, G.W.: 1998b, 'The 53Mn-53Cr Isotope System in the Indarch EH4 Chondrite: A Further Argument for 53Mn Heterogeneity in the Early Solar System', Lunar. Planet. Sci. XXIX, abstr. 1280.Google Scholar
  28. Shukolyukov, A., and Lugmair, G.W.: 1999, 'The 53Mn-53Cr Isotope Systematics of the Enstatite Chondrites', Lunar Planet. Sci. XXX, abstr. 1093.ADSGoogle Scholar
  29. Srinivasan, G., Russel, S. S., MacPherson, G. J., Huss, G.R., and Wasserburg, G. J.: 1996, 'New Evidence for 26Al in CAI's and Chondrules From Type 3 Ordinary Chondrites', Lunar. Planet. Sci. XXVII, 1257–1258.ADSGoogle Scholar
  30. Tscharnuter, W.M., and Boss, A. P.: 1993, 'Formation of the Protosolar Nebula', in E. H. Levy and J. I. Lunine (eds.), Protostars and Planets II, UAP, pp. 921–938.Google Scholar
  31. Wadhwa, M., Shukolyukov, A., and Lugmair, G.W.: 1996, '53Mn-53Cr Systematics in Brachina: A Record of one of the Earliest Phases of Igneous Activity on an Asteroid', Lunar. Planet. Sci. XXIX, abstr. 1480.Google Scholar
  32. Wänke, H.: 1981, 'Constitution of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A 303, 287–302.ADSGoogle Scholar
  33. Wänke, H., and Dreibus, G.: 1988, 'Chemical Composition and Accretion History of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A 325, 545–557.ADSGoogle Scholar
  34. Wänke, H., and Dreibus, G.: 1997, 'New Evidence for Silicon as the Major Light Element in the Earth's Core', Lunar. Planet. Sci. XXVIII, 1495–1496.Google Scholar
  35. Weidenschilling, S. J.: 1977, 'Aerodynamics of Solid Bodies in the Solar Nebula', Mon. Not. Roy. Astron. Soc. 180, 57–70.ADSGoogle Scholar
  36. Wetherill, G.W., and Chambers, J. E.: 1997, 'Numerical Integration Study of Primordial Clearing of the Asteroid Belt', Lunar Planet. Sci. Conf. XXVIII, 1547–1548.ADSGoogle Scholar
  37. Wood, J.A.: 1996, 'Thermal Processing in the Solar Nebula: Constraints From Refractory Conclusions', in R. Hewins (ed.), Chondrules and the Protoplanetary Nebula, Cambridge Univ. Press, Cambridge.Google Scholar
  38. Zipfel, J., Shukolyukov, A., and Lugmair, G.W.: 1996, 'Manganese-chromium Systematics in the Acapulco Meteorite', Meteoritics Planet. Sci. 31, abstr. A160.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alexander Shukolyukov
    • 1
  • Günter W. Lugmair
    • 2
  1. 1.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.CosmochemistryMax-Planck-Institute for ChemistryMainzGermany

Personalised recommendations