Advertisement

Solar Physics

, Volume 191, Issue 1, pp 201–226 | Cite as

Solar activity cycles, north/south asymmetries, and differential rotation associated with solar spin-orbit variations

  • David A. Juckett
Article

Abstract

The possible role of the Sun's planetary-induced spin-orbit dynamics in the generation of various solar oscillations is examined using simple approaches and heuristic models. Theoretically, the 22.5-yr dipole inversion magnetic cycle and the recently described 17-yr neutral line topology cycle can be derived from the non-linear mixing of two oscillations with periods of approximately 20 and 165 years. Oscillations with such periods are observed in two aspects of the Sun's spin-orbit dynamics. The 20-yr oscillation is the fundamental variation in the angular momentum of the solar body with respect to the solar system center-of-mass, while the 165-yr oscillation is the lowest-frequency component of the spin projection variations. It is shown that these two oscillations when mixed non-linearly yield, to a 1st-order approximation, the correct phase and frequency of the observed 17.5- and 22.5-yr magnetic cycles. By allowing an asymmetric shape to the 165-yr oscillation, the frequency modulation inherent in the Hale cycle (and sunspot cycle) is reproduced, yielding a more accurate estimate of solar activity. The asymmetric 165-yr oscillation matches the combination of the two lowest frequency components (165- and 84-yr periods) of the spin projection variations. Hemispheric sunspot asymmetry cycles, north/south differences in convective zone rotational velocities, and meridional flows are also shown to be expected byproducts of classical spin-orbit effects. Finally, the problem of low activity epochs (e.g., Maunder minimum) can be seen as a natural outcome of the interactions among the driving and driven oscillations involved in the conservation of solar system angular momentum.

Keywords

Solar Activity Meridional Flow Solar Activity Cycle Maunder Minimum Magnetic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ataç, T. and Özgüç, A.: 1996, Solar Phys. 166, 201.Google Scholar
  2. Balthasar, H. and Vazquez, M. W. H.: 1986, Astron. Astrophys. 155, 87.Google Scholar
  3. Basu, D.: 1998, Solar Phys. 183, 291.Google Scholar
  4. Beer, J., Tobias, S., and Weiss, N.: 1998, Solar Phys. 181, 237.Google Scholar
  5. Berger, A., Melice, J. L., and van der Mersch, I.: 1990, Phil. Trans. Roy. Soc. Lond. A 330, 529.Google Scholar
  6. Blizard, J. B.: 1969, Long Range Solar Flare Prediction, Denver Research Institute, NASA Contract 21436, Denver.Google Scholar
  7. Blizard, J. B.: 1987, in M. R. Rampino, J. E. Sanders, W. S. Newman, and L. K. Konigsson (eds), Climate, Van Nostrand Reinhold Co., New York, p. 415.Google Scholar
  8. Carbonell, M., Oliver, R., and Ballester, J. L.: 1993, Astron. Astrophys. 274, 497.Google Scholar
  9. Cliver, E. W. and Voriakoff, V.: 1996, J. Geophys. Res. 101, 27091.Google Scholar
  10. Cole, T. W.: 1973, Solar Phys. 30, 103.Google Scholar
  11. Damon, P. E., Cheng, S., and Linick, T.: 1989, Radiocarbon 31, 704.Google Scholar
  12. De Meyer, E.: 1998, Solar Phys. 181, 201.Google Scholar
  13. Donahue, R. A. and Baliunas, S. L.: 1992, Solar Phys. 141, 181.Google Scholar
  14. Duchlev, P. I. and Dermendjiev, V. N.: 1996, Solar Phys. 168, 205.Google Scholar
  15. Erdos, G. and Balogh, A.: 1998, Geophys. Res. Letters 25, 245.Google Scholar
  16. Fairbridge, R. W. and Sanders, J. E.: 1987, in M. R. Rampino, J. E. Sanders, W. S. Newman, and L. K. Konigsson (eds.), Climate, Van Nonstrand Reinhold Co, New York, p. 446.Google Scholar
  17. Garcia, H. A.: 1990, Solar Phys. 127, 185.Google Scholar
  18. Giles, P. M., Duvall, T. L., Scherrer, P. H., and Bogart, R. S.: 1997, Nature 390, 52.Google Scholar
  19. Gilman, P. A. and Howard, R.: 1984, Astrophys. J. 283, 385.Google Scholar
  20. Girish, T. E. and Gopkumar, G.: 1996, Astrophys. Space Sci. 243, 165.Google Scholar
  21. Hale, G. E.: 1924, Nat. Acad. Sci. Proc. USA 10, 53.Google Scholar
  22. Hoyt, D. V. and Schatten, K. H.: 1998, Solar Phys. 181, 491.Google Scholar
  23. Javaraiah, J. and Gokhale, M. H.: 1997, Solar Phys. 170, 389.Google Scholar
  24. Jose, P. D.: 1965, Astron. J. 70, 193.Google Scholar
  25. Juckett, D. A.: 1998, Solar Phys. 183, 201.Google Scholar
  26. Landscheidt, T.: 1981, J. Interdiscipl. Cycle Res., 12, 3.Google Scholar
  27. Landscheidt, T.: 1987, in M. R. Rampino, J. E. Sanders, W. S. Newman, and L. K. Konigsson (eds.), Climate, Van Nonstrand Reinhold Co, New York, p. 421.Google Scholar
  28. Li, L. S.: 1997, Commun. Theor. Phys. 27, 361.Google Scholar
  29. Merzlyakov, V. L.: 1997, Solar Phys. 170, 425.Google Scholar
  30. Mörth, H. T. and Schlamminger, L.: 1979, in B. M. McCormac and T. A. Seliga (eds), Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publishing Co., Dordrecht, Holland, p. 193.Google Scholar
  31. Oliver, R. and Ballester, J. L.: 1996, Solar Phys. 169, 215.Google Scholar
  32. Pasricha, P. K., Aggarwal, S., and Reddy, B. M.: 1991, Ann. Geophys. 9, 696.Google Scholar
  33. Pulkkinen, P. and Tuominen, I.: 1998a, Astron. Astrophys. 332, 748.Google Scholar
  34. Pulkkinen, P. and Tuominen, I.: 1998b, Astron. Astrophys. 332, 755.Google Scholar
  35. Rozelot, J. P.: 1994, Solar Phys. 149, 149.Google Scholar
  36. Ruzmaikin, A., Feynman, J., and Kosacheva: 1992, Solar Cycle ASP Conf. Ser. 27, 547.Google Scholar
  37. Sabbah, I.: 1994, Ann. Geophys.-Atmospheres Hydrospheres Space Sci. 12, 279.Google Scholar
  38. Schmitt, D.: 1993, in F. Krause, K. H. Radler, and G. Rudiger (eds), The Cosmic Dynamo, Kluwer Adademic Publishers, Dordrecht, p. 1.Google Scholar
  39. Sergeyevsky, A. B., Snyder, G. C., Paulson, B. L., and Cunniff, R. A.: 1983, Planetary Geometry Handbook, Jet Propulsion Laboratory, Pasadena CA.Google Scholar
  40. Simpson, J. A., Zhang, M., and Bame, S.: 1996, Astrophys. J. 465, L69-L72.Google Scholar
  41. Smith, C. W. and Bieber, J. W.: 1993, J. Geophys. Res. 98, 9401.Google Scholar
  42. Sonett, C. P.: 1983, in in B. M. McCormac (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder, CO, p. 607.Google Scholar
  43. Stuiver, M. and Braziunas, T. F.: 1989, Nature 338, 405.Google Scholar
  44. Uddin, W., Pande, M. C., and Verma, V. K.: 1991, Astrophys. Space Sci. 181, 111.Google Scholar
  45. Verma, V. K.: 1993, Astrophys. J. 403, 797.Google Scholar
  46. Vizoso, G. and Ballester, J. L.: 1989, Solar Phys. 119, 411.Google Scholar
  47. Volland, H.: 1992, Astron. Astrophys. 259, 663.Google Scholar
  48. Wilson, P. R.: 1994, Solar and Stellar Activity Cycles, Cambridge University Press, Cambridge, England.Google Scholar
  49. Wilson, R. M.: 1998, Solar Phys. 182, 217.Google Scholar
  50. Wood, K. D.: 1972, Nature 240, 91.Google Scholar
  51. Wood, R. M.: 1975, Nature 255, 312.Google Scholar
  52. Wood, R. M. and Wood, K. D.: 1965, Nature 208, 129.Google Scholar
  53. Yi, W.: 1992, J. Roy. Astron. Soc. Canada 86, 89.Google Scholar
  54. Zaqarashvili, T. V.: 1997, Astrophys. J. 487, 930. ??Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • David A. Juckett
    • 1
    • 2
  1. 1.Barros Research InstituteHoltU.S.A.
  2. 2.Department of ChemistryMichigan State UniversityEast LansingU.S.A.

Personalised recommendations