, Volume 125, Issue 3, pp 317–332 | Cite as

Mathematical Intuition Vs. Mathematical Monsters*

  • Solomon Feferman


Geometrical and physical intuition, both untutored andcultivated, is ubiquitous in the research, teaching,and development of mathematics. A number ofmathematical ``monsters'', or pathological objects, havebeen produced which – according to somemathematicians – seriously challenge the reliability ofintuition. We examine several famous geometrical,topological and set-theoretical examples of suchmonsters in order to see to what extent, if at all,intuition is undermined in its everyday roles.


Physical Intuition Mathematical Intuition Pathological Object Everyday Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boolos, G.: 1971, 'The Iterative Conception of Set', J. Philosophy 68, 215–231.(Reprinted in Boolos 1998, 13–29.)Google Scholar
  2. Boolos, G.: 1998, Logic, Logic and Logic, Harvard University Press, Cambridge, MA.Google Scholar
  3. Davis, P.J. and Hersh, R.: 1981, The Mathematical Experience, Birkhäuser, Boston.Google Scholar
  4. Dougherty, R. and M. Foreman: 1994, 'Banach–Tarski Decompositions Using Sets with the Property of Baire', J. Amer. Math. Soc. 7, 75–124Google Scholar
  5. Feferman, S.: 1977, 'Theories of Finite Type Related to Mathematical Practice', in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, pp. 913–971.Google Scholar
  6. Feferman, S.: 1998, In the Light of Logic, Oxford, New York.Google Scholar
  7. Feferman, S.:1999, 'Does Mathematics Need New Axioms?', Amer. Math. Monthly 106, 99–111.Google Scholar
  8. Fischbein, E.: 1987, Intuition in Science and Mathematics, Reidel, Dordrecht.Google Scholar
  9. Folina, J.: 1992, Poincaré and the Philosophy of Mathematics, Macmillan, London.Google Scholar
  10. Hadamard, J.: 1949, The Psychology of Invention in the Mathematical Field, Princeton University Press, Princeton. (Reprinted by Dover Publications, New York, 1954.)Google Scholar
  11. Hahn, H.: 1933, 'The Crisis in Intuition', in Hahn (1980), pp. 73–102.Google Scholar
  12. Hahn, H.: 1980, Empiricism, Logic and Mathematics, Reidel, Dordrecht.Google Scholar
  13. Hocking, J. G. and G. S. Young: 1961, Topology, Addison-Wesley, Reading, MA.Google Scholar
  14. Jaffe, A. and F. Quinn: 1993, 'Theoretical Mathematics: Toward a Cultural Synthesis of Mathematics and Theoretical Physics', Bull. Amer. Math. Soc. 29, 1–13.Google Scholar
  15. Lakatos, I.: 1976, Proofs and Refutations, Cambridge University Press, Cambridge.Google Scholar
  16. Lakoff, G. and R. E. Nunez: 1997, 'The Metaphorical Structure of Mathematics: Sketching Out Cognitive Foundations for a Mind-Based Mathematics', in L. D. English (ed.), Mathematical Reasoning: Analogies, Metaphors, and Images, Lawrence Erlbaum Associates, Matwah NJ, pp. 21–89.Google Scholar
  17. Leibniz, G. W.: 1958, in L. E. Loemker (ed.), Philosophical Papers and Letters, Vol.II, University of Chicago Press, Chicago.Google Scholar
  18. MacLane, S.: 1986, Mathematics: Form and Function, Springer-Verlag, Berlin.Google Scholar
  19. Mandelbrot, B. B.: 1983, The Fractal Geometry of Nature, W.H. Freeman and Co., New York.Google Scholar
  20. Moore, G. H.: 1982, Zermelo's Axiom of Choice. Its Origins, Development and Influence, Springer-Verlag, Berlin.Google Scholar
  21. Parsons, C.: 1979, 'Mathematical Intuition', Proc. Aristotelian Soc. N.S. 80, 145–68.Google Scholar
  22. Parsons, C.: 1983, Mathematics in Philosophy: Selected Essays, Cornell University Press, Ithaca.Google Scholar
  23. Parsons, C.: 1994, 'Intuition and Number', in A. George (ed.), Mathematics and Mind, Oxford University Press, New York, pp. 141–157.Google Scholar
  24. Parsons, C.: 1995, 'Platonism and Intuition in Gödel's Thought', Bull. Symbolic Logic 1, 44–74.Google Scholar
  25. Poincaré, H.: 1952, Science and Method, Dover Publications, New York. (English translation of Science et Méthode, E. Flammarion, Paris, 1908).Google Scholar
  26. Solovay, R. M.: 1970, 'A Model of Set-Theory in which Every Set of Reals is Lebesgue Measurable', Annals of Mathematics 92, 1–56.Google Scholar
  27. Thom, R.: 1975, Structural Stability and Morphogenesis, Benjamin Cummings, Redwood City.Google Scholar
  28. Thurston, W. P.: 1994, 'On Proof and Progress in Mathematics', Bull. Amer. Math. Soc. 30, 161–177.Google Scholar
  29. Tieszen, R. L.: 1989, Mathematical Intuition, Kluwer, Dordrecht.Google Scholar
  30. Wagon, S.: 1985, The Banach–Tarski Paradox, Cambridge University Press, Cambridge.Google Scholar
  31. Westcott, M. R.: 1968, Toward a Contemporary Psychology of Intuition, Holt, Rinehart and Winston, New York.Google Scholar
  32. Zeeman, E. C.: 1977, Catastrophe Theory; Selected Papers 1972–1977, Addison-Wesley, Reading, MA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Solomon Feferman
    • 1
  1. 1.Department of MathematicsStanford University StanfordU.S.A.

Personalised recommendations