Theoretical and Mathematical Physics

, Volume 126, Issue 1, pp 92–100 | Cite as

Nonconformal Scalar Field in a Homogeneous Isotropic Space and the Hamiltonian Diagonalization Method

  • Yu. V. Pavlov


We diagonalize the metric Hamiltonian and evaluate the energy spectrum of the corresponding quasiparticles for a scalar field coupled to a curvature in the case of an N-dimensional homogeneous isotropic space. The energy spectrum for the quasiparticles corresponding to the diagonal form of the canonical Hamiltonian is also evaluated. We construct a modified energy–momentum tensor with the following properties: for the conformal scalar field, it coincides with the metric energy–momentum tensor; the energies of the particles corresponding to its diagonal form are equal to the oscillator frequency; and the number of such particles created in a nonstationary metric is finite. We show that the Hamiltonian defined by the modified energy–momentum tensor can be obtained as the canonical Hamiltonian under a certain choice of variables.


Energy Spectrum Scalar Field Oscillator Frequency Momentum Tensor Diagonal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields [in Russian], Energoatomizdat, M. (1988); English transl., Friedmann Laboratory Publishing, St. Petersburg (1994).Google Scholar
  2. 2.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1982).Google Scholar
  3. 3.
    V. B. Bezerra, V. M. Mostepanenko, and C. Romero, Int. J. Mod. Phys. D, 7, 249 (1998).Google Scholar
  4. 4.
    I. H. Redmount, Phys. Rev. D, 60, 104004 (1999).Google Scholar
  5. 5.
    J. Lindig, Phys. Rev. D, 59, 064011 (1999).Google Scholar
  6. 6.
    M. Bordag, J. Lindig, V. M. Mostepanenko, and Yu. V. Pavlov, Int. J. Mod. Phys. D, 6, 449 (1997).Google Scholar
  7. 7.
    M. Bordag, J. Lindig, and V. M. Mostepanenko, Class. Q. Grav., 15, 581 (1998).Google Scholar
  8. 8.
    A. A. Grib and S. G. Mamaev, Sov. J. Nucl. Phys., 10, 722 (1969).Google Scholar
  9. 9.
    A. A. Grib and S. G. Mamaev, Sov. J. Nucl. Phys., 14, 450 (1971).Google Scholar
  10. 10.
    L. Parker, Phys. Rev., 183, 1057 (1969).Google Scholar
  11. 11.
    S. A. Fulling, Gen. Relat. Gravit., 10, 807 (1979).Google Scholar
  12. 12.
    N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. PoincaréA, 9, 109 (1968).Google Scholar
  13. 13.
    M. Castagnino and R. Ferraro, Phys. Rev. D, 34, 497 (1986).Google Scholar
  14. 14.
    M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Nauka, M. (1983); English transl.: Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin (1993).Google Scholar
  15. 15.
    S. G. Mamaev, V. M. Mostepanenko, and V. A. Shelyuto, Theor. Math. Phys., 63, 366 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Yu. V. Pavlov
    • 1
  1. 1.Institute for Problems in Machine Science, RASSt. PetersburgRussia

Personalised recommendations