Journal of Psycholinguistic Research

, Volume 30, Issue 1, pp 37–69 | Cite as

The Declarative/Procedural Model of Lexicon and Grammar

  • Michael T. Ullman
Article

Abstract

Our use of language depends upon two capacities: a mental lexicon of memorized words and a mental grammar of rules that underlie the sequential and hierarchical composition of lexical forms into predictably structured larger words, phrases, and sentences. The declarative/procedural model posits that the lexicon/grammar distinction in language is tied to the distinction between two well-studied brain memory systems. On this view, the memorization and use of at least simple words (those with noncompositional, that is, arbitrary form-meaning pairings) depends upon an associative memory of distributed representations that is subserved by temporal-lobe circuits previously implicated in the learning and use of fact and event knowledge. This “declarative memory” system appears to be specialized for learning arbitrarily related information (i.e., for associative binding). In contrast, the acquisition and use of grammatical rules that underlie symbol manipulation is subserved by frontal/basal-ganglia circuits previously implicated in the implicit (nonconscious) learning and expression of motor and cognitive “skills” and “habits” (e.g., from simple motor acts to skilled game playing). This “procedural” system may be specialized for computing sequences. This novel view of lexicon and grammar offers an alternative to the two main competing theoretical frameworks. It shares the perspective of traditional dual-mechanism theories in positing that the mental lexicon and a symbol-manipulating mental grammar are subserved by distinct computational components that may be linked to distinct brain structures. However, it diverges from these theories where they assume components dedicated to each of the two language capacities (that is, domain-specific) and in their common assumption that lexical memory is a rote list of items. Conversely, while it shares with single-mechanism theories the perspective that the two capacities are subserved by domain-independent computational mechanisms, it diverges from them where they link both capacities to a single associative memory system with broad anatomic distribution. The declarative/procedural model, but neither traditional dual- nor single-mechanism models, predicts double dissociations between lexicon and grammar, with associations among associative memory properties, memorized words and facts, and temporal-lobe structures, and among symbol-manipulation properties, grammatical rule products, motor skills, and frontal/basal-ganglia structures. In order to contrast lexicon and grammar while holding other factors constant, we have focused our investigations of the declarative/procedural model on morphologically complex word forms. Morphological transformations that are (largely) unproductive (e.g., in go—went, solemn—solemnity) are hypothesized to depend upon declarative memory. These have been contrasted with morphological transformations that are fully productive (e.g., in walk—walked, happy—happiness), whose computation is posited to be solely dependent upon grammatical rules subserved by the procedural system. Here evidence is presented from studies that use a range of psycholinguistic and neurolinguistic approaches with children and adults. It is argued that converging evidence from these studies supports the declarative/procedural model of lexicon and grammar.

language lexicon grammar declarative memory procedural memory morphology regular irregular frontal lobe temporal lobe basal ganglia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor oculomotor 'prefrontal' and 'limbic' functions. In H. B. M. Uylings & C. G. V. Eden & J. P. C. DeBruin & M. A. Corner & M. G. P. Feenstra (Eds.), Progress on brain research (Vol. 85, pp. 119-146). New York: Elsevier.Google Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357-381.Google Scholar
  3. Alexander, M. P. (1997). Aphasia: Clinical and anatomic aspects. In T. E. Feinberg & M. J. Farah (Eds.), Behavioral neurology and neuropsychology (pp. 133-150). New York: McGraw-Hill.Google Scholar
  4. Anderson, S. R. (1992). A-morphous morphology (Vol. 62). New York: Cambridge University Press.Google Scholar
  5. Appell, J., Kertesz, A., & Fisman, M. (1982). A study of language functioning in Alzheimer's patients. Brain and Language, 17, 73-91.Google Scholar
  6. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Hoesen, G. W. V. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cerebral Cortex, 1, 103-116.Google Scholar
  7. Aronoff, M. (1976). Word formation in generative grammar. Cambridge, Massachusetts: The MIT Press.Google Scholar
  8. Badecker, W., & Caramazza, A. (1987). The analysis and morphological errors in a case of acquired dyslexia. Brain and language, 32, 278-305.Google Scholar
  9. Badecker, W., & Caramazza, A. (1991). Morphological composition in the lexical output system. Cognitive Neuropsychology, 8, 335-367.Google Scholar
  10. Barrett, S. E., & Rugg, M. D. (1989). Event-related potentials and the semantic matching of faces. Neuropsychologia, 27, 913-922.Google Scholar
  11. Barrett, S. E., & Rugg, M. D. (1990). Event-related potentials and the semantic matching of pictures. Brain and Cognition, 14, 201-212.Google Scholar
  12. Bates, E., & MacWhinney, B. (1989). Functionalism and the competition model. In B. MacWhinney & E. Bates (Eds.), The crosslinguistic study of sentence processing (pp. 3-73). Cambridge: Cambridge University Press.Google Scholar
  13. Bayles, K. A. (1982). Language function in senile dementia. Brain and Language, 16, 265-280.Google Scholar
  14. Beatty, W. W., Winn, P., Adams, R. L., Allen, E. W., Wilson, D. A., Prince, J. R., Olson, K. A., Dean, K., & Littleford, D. (1994). Preserved cognitive skills in dementia of the Alzheimer type. Archives of Neurology, 51, 1040-1046.Google Scholar
  15. Beatty, W. W., Zavadil, K. D., Bailly, R. C., Rixen, G. J., Zavadil, L. E., Farnham, N., & Fisher, L. (1988). Preserved musical skill in a severely demented patient. International Journal of Clinical Neuropsychology, 10(4), 158-164.Google Scholar
  16. Bellugi, U., Bihrle, A., Jernigan, T., Trauner, D., & Doherty, S. (1990). Neuropsychological, neurological, and neuroanatomical profile of Williams Syndrome. American Journal of Medical Genetics Supplement, 6, 115-125.Google Scholar
  17. Bergida, R., O'Craven, K., Savoy, R. L., & Ullman, M. T. (1998) fMRI double dissociations in frontal and temporal regions between regular and irregular past tense production. Paper presented at the 5th Annual Meeting of the Cognitive Neuroscience Society, San Francisco, California.Google Scholar
  18. Bishop, D. V. M. (1992). The underlying nature of specific language impairment. Journal of Child Psychology and Psychiatry, 33, 3-66.Google Scholar
  19. Bromberg, H., Ullman, M. T., Coppola, M., Marcus, G., Kelly, K., & Levine, K. (1994). A dissociation of memory and grammar: Evidence from Williams Syndrome. 18th Annual Boston University Conference on Language Development, Boston, Massachusetts.Google Scholar
  20. Bybee, J. L., & Moder, C. L. (1983). Morphological classes as natural categories. Language, 59, 251-270.Google Scholar
  21. Bybee, J. L., & Slobin, D. I. (1982). Rules and schemas in the development and use of the English past tense. Language, 58g, 265-289.Google Scholar
  22. Cappa, S., & Ullman, M. T. (1998). A neural dissociation in Italian verbal morphology. Paper presented at the 5th Annual Meeting of the Cognitive Neuroscience Society, San Francisco, California.Google Scholar
  23. Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.Google Scholar
  24. Chomsky, N. (1995). The minimalist program. Cambridge, Massachusetts: MIT Press.Google Scholar
  25. Clahsen, H. (1999). Lexical entries and rules of language: A multidisciplinary study of German inflection. Behavioral and Brain Sciences, 22(6), 991-1060.Google Scholar
  26. Clahsen, H., & Almazan, M. (1998). Syntax and morphology in Williams syndrome. Cognition, 68, 167-198.Google Scholar
  27. Cottrell, G. W., & Plunkett, K. (1991). Learning the past tense in a recurrent Network: Acquiring the mapping from meaning to sounds, Proceedings of the 13th Annual Conference of the Cognitive Science Society (pp. 328-333). Hillsdale, New Jersey: Lawrence Erlbaum.Google Scholar
  28. Curran, T., & Schacter, D. L. (1997). Amnesia: Cognitive neuropsychological aspects. In T. E. Feinberg & M. J. Farah (Eds.), Behavioral neurology and neuropsychology (pp. 463-471). New York: McGraw-Hill.Google Scholar
  29. Cushman, L. A., & Caine, E. D. (1987). A controlled study of processing of semantic and syntactic information in Alzheimer's disease. Archives of Clinical Neuropsychology, 2, 283-292.Google Scholar
  30. Daugherty, K., & Seidenberg, M. (1992, April). Rules or connections? The past tense revisited. Paper presented at the Milwaukee Rules Conference, Milwaukee, Wisconsin.Google Scholar
  31. De Renzi, E. (1989). Apraxia. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology (Vol. 2, pp. 245-263). New York: Elsevier.Google Scholar
  32. Dubois, B., Boller, F., Pillon, B., & Agid, Y. (1991). Cognitive deficits in Parkinson's disease. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 5, pp. 195-240). Amsterdam: Elsevier.Google Scholar
  33. Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, Massachusetts: MIT Press.Google Scholar
  34. Farah, M. J., & Grossman, M. (1997). Semantic memory impairments. In I. E. Feinberg & M. J. Farah (Eds.), Behavioral neurology and neuropsychology (pp. 473-477). New York: McGraw-Hill.Google Scholar
  35. Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. Cambridge, Massachusetts: The MIT Press.Google Scholar
  36. Fodor, J. A. (1985). Precis of the modularity of mind. Behavioral and brain sciences, 8, 1-42.Google Scholar
  37. Fox, P. T., Mintum, M. A., Reiman, E. M., & Raichle, M. E. (1988). Enhanced detection of focal brain responses using intersubject averaging and changing-distribution analysis of subtracted PET images. Journal of Cerebral Blood Flow and Metabolism, 8, 642-653.Google Scholar
  38. Friederici, A. D., Hahne, A., & von Cramon, D. Y. (1998). First-pass versus second-pass parsing processes in a Wernicke's and a Broca's aphasic: Electrophysiological evidence for a double dissociation. Brain and Language, 62(3), 311-341.Google Scholar
  39. Fujiwara, M., & Ullman, M. T. (1999). The computation of default suffixation in Japanese adjectival past tense formation. Paper presented at the 12th Annual CUNY Conference on Human Sentence Processing, CUNY, New York.Google Scholar
  40. Gabrieli, J. D. E., Corkin, S., Mickel, S. F., & Growdon, J. H. (1993). Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer's disease and in global amnesia. Behavioral Neuroscience, 107, 899-910.Google Scholar
  41. Goodglass, H. (1993). Understanding aphasia. San Diego, California: Academic Press.Google Scholar
  42. Graham, K. S., & Hodges, J. R. (1997). Differentiating the roles of the hippocampal complex and the neocortex in long-term memory storage: Evidence from the study of semantic dementia and Alzheimer's disease. Neuropsychology, 11, 77-89.Google Scholar
  43. Graybiel, A. M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology, 5, 733-741.Google Scholar
  44. Gross, M., Say, T., Kleingers, M., Mu¨nte, T. F., & Clahsen, H. (1998). Human brain potentials to violations in morphologically complex Italian words. Neuroscience Letters, 241, 83-86.Google Scholar
  45. Grossman, M., Carvell, S., Gollomp, S., Stern, M. B., Reivich, M., Morrison, D., Alavi, A., & Hurtig, H. I. (1993). Cognitive and physiological substrates of impaired sentence processing in Parkinson's disease. Journal of Cognitive Neuroscience, 5, 480-498.Google Scholar
  46. Grossman, M., Carvell, S., Gollomp, S., Stern, M. B., Vernon, G., & Hurtig, H. I. (1991). Sentence comprehension and praxis deficits in Parkinson's disease. Neurology, 41, 1620-1626.Google Scholar
  47. Grossman, M., Carvell, S., & Peltzer, L. (1993). The sum and substance of it: The appreciation of mass and count qualifiers in Parkinson's disease. Brain and Language, 44, 351-384.Google Scholar
  48. Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson's disease: The role of attention and memory. Brain and Language, 42, 347-384.Google Scholar
  49. Grossman, M., Payer, F., Onishi, K., D'Esposito, M., Morrison, D., Sadek, A., & Alavi, A. (1998). Language comprehension and regional cerebral defects in frontotemporal degeneration and Alzheimer's disease. Neurology, 50, 157-163.Google Scholar
  50. Hagoort, P., & Kutus, M. (1995). Electrophysiological insights into language deficits. In R. J. Jr. (Ed.), Handbook of Neuropsychology (Vol. 10, pp. 105-134). Amsterdam: Elsevier.Google Scholar
  51. Halle, M., & Marantz, A. (1993). Distributed morphology and the pieces of inflection, The view from building 20. Cambridge, Massachusetts: MIT Press.Google Scholar
  52. Halle, M., & Mohanan, K. P. (1985). Segmental phonology of modern English. Linguistic Inquiry, 16, 57-116.Google Scholar
  53. Hare, M., & Elman, J. (1995). Learning and morphological change. Cognition, 56, 61-98.Google Scholar
  54. Hare, M., Elman, J. L., & Daugherty, K. G. (1995). Default generalization in connectionist networks. Language and Cognitive Processes, 10, 601-630.Google Scholar
  55. Harrington, D. L., Haaland, K. Y., Yeo, R. A., & Marder, E. (1990). Procedural memory in Parkinson's disease: Impaired motor but not visuoperceptual Learning. Journal of Clinical and Experimental Neuropsychology, 12, 323-339.Google Scholar
  56. Hier, D. B., Hagenlocker, K., & Shindler, A. G. (1985). Language disintegration in dementia: Effects of etiology and severity. Brain and Language, 25, 117-133.Google Scholar
  57. Hoard, J. E., & Sloat, C. (1973). English irregular verbs. Language, 49, 107-120.Google Scholar
  58. Hodges, J. R., & Patterson, K. (1997). Semantic memory disorders. Trends in Cognitive Sciences, 1, 68-72.Google Scholar
  59. Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia. Brain, 115, 1783-1806.Google Scholar
  60. Hoover, J. E., & Strick, P. L. (1993). Multiple output channels in the basal ganglia. Science, 259, 819-821.Google Scholar
  61. Hurst, J. A., Baraister, M., Auger, E., Graham, F., & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine and Child Neurology, 32, 352-355.Google Scholar
  62. Illes, J. (1989). Neurolinguistic features of spontaneous language production dissociate three forms of neurogenerative disease: Alzheimer's, Huntington's, and Parkinson's. Brain and Language, 37, 628-642.Google Scholar
  63. Illes, J., Metter, E. J., Hanson, W. R., & Iritani, S. (1988). Language production in Parkinson's disease: Acoustic and linguistic considerations. Brain and Language, 33, 146-160.Google Scholar
  64. Indefrey, P., Brown, C., Hagoort, P., Herzog, H., Sach, M., & Seitz, R. J. (1997). A PET study of cerebral activation patterns induced by verb inflection. NeuroImage, 5, S548.Google Scholar
  65. Irigaray, L. (1973). Le Langage des Dements. The Hague: Mouton.Google Scholar
  66. Jaeger, J. J., Lockwood, A. H., Kemmerer, D. L., Van Valin Jr., R. D., Murphy, B. W., & Khalak, H. G. (1996). A positron emission tomographic study of regular and irregular verb morphology in English. Language, 72, 451-497.Google Scholar
  67. Joanisse, M. F., & Seidenberg, M. S. (1999). Impairments in verb morphology after brain injury: A connectionist model. Proceedings of the National Academy of Science USA, 96, p7592-7597.Google Scholar
  68. Kempler, D., Curtiss, S., & Jackson, C. (1987). Syntactic preservation in Alzheimer's disease. Journal of Speech and Hearing Research, 30, 343-350.Google Scholar
  69. Leonard, L. B. (1998). Children with specific language impairment. Cambridge, Massachusetts: MIT Press.Google Scholar
  70. Lieberman, P., Friedman, J., & Feldman, L. S. (1990). Syntax comprehension deficits in Parkinson's disease. The Journal of Nervous and Mental Disease, 178, 360-365.Google Scholar
  71. Lieberman, P., Kako, E., Friedman, J., Tajchman, G., Feldman, L. S., & Jiminez, E. B. (1992). Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease. Brain and Language, 43, 169-189.Google Scholar
  72. Ling, C. X., & Marinov, M. (1993). Answering the connectionist challenge: A symbolic model of learning the past tenses of English verbs. Cognition, 49, 235-296.Google Scholar
  73. MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. (1994). Lexical nature of syntactic ambiguity resolution. Psychological Review, 101, 676-703.Google Scholar
  74. MacWhinney, B., & Bates, E. (Eds.). (1989). The cross-linguistic study of sentence processing. New York: Cambridge University Press.Google Scholar
  75. MacWhinney, B., & Leinbach, J. (1991). Implementations are not conceptualizations: Revising the verb learning model. Cognition, 40, 121-157.Google Scholar
  76. Marchman, V. A. (1993). Constraints on plasticity in a connectionist model of the English past tense. Journal of Cognitive Neuroscience, 5, 215-234.Google Scholar
  77. Marchman, V. A. (1997). Children's productivity in the English past tense: The role of frequency, phonology, and neighborhood structure. Cognitive Science, 21, 283-304.Google Scholar
  78. Marcus, G. F., Brinkmann, U., Clahsen, H., Wiese, R., & Pinker, S. (1995). German inflection: The exception that proves the rule. Cognitive Psychology, 29, 189-256.Google Scholar
  79. Marcus, G. F., Pinker, S., Ullman, M. T., Hollander, M., Rosen, T. J., & Xu, F. (1992). Overregularization in language acquisition. Monographs of the Society for Research in Child Development, 57, 1-165.Google Scholar
  80. Marin, O. S. M., Saffran, E. M., & Schwartz, M. F. (1976). Dissociations of language in aphasia: Implications for normal function. Annals of the New York Academy of Sciences, 280, pp. 868-884.Google Scholar
  81. Marslen-Wilson, W. D., & Tyler, L. K. (1997). Dissociating types of mental computation. Nature, 387, 592-594.Google Scholar
  82. Martin, A., Wiggs, C. L., Ungeleider, L. G., & Haxby, J. V. (1996). Neural correlates of categoryspecific knowledge. Nature (London), 379, 649-652.Google Scholar
  83. Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch & J. L. McGaugh & N. W. Weinburger (Eds.), Neurobiology of learning and memory (pp. 65-77). New York: Guilford Press.Google Scholar
  84. Murdoch, B. E., Chenery, H. J., Wilks, V., & Boyle, R.(1987). Language disorders in dementia of the Alzheimer's type. Brain and Language, 31, 122-137.Google Scholar
  85. Natsopoulos, D., Katsarou, Z., Bostantzopoulou, S., Grouios, G., Mentenopoulos, G., & Logothetis, J. (1991). Strategies in comprehension of relative clauses by Parkinsonian patients. Cortex, 27, 255-268.Google Scholar
  86. Nebes, R. D. (1989). Semantic memory in Alzheimer's disease. Psychological Bulletin, 106, 377-394.Google Scholar
  87. Neville, H., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically based sentence processing classes: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 3, 151-165.Google Scholar
  88. Newell, A., & Simon, H. A. (1981). Computer science as empirical inquiry: Symbol and search. In J. Haugeland (Ed.), Mind design: Philosophy psychology artificial intelligence (pp. 35-66). Cambridge, Massachusetts: MIT Press.Google Scholar
  89. Newman, A., Izvorski, R., Davis, L., Neville, H., & Ullman, M. T. (1999). Distinct electrophysiological patterns in the processing of regular and irregular verbs. Journal of Cognitive Neuroscience, Supplement, 47.Google Scholar
  90. Newman, A., Neville, H., & Ullman, M. T. (1998). Neural processing of inflectional morphology: An event-related potential study of English past tense. Paper presented at the 5th Annual Meeting of the Cognitive Neuroscience Society, San Francisco, California.Google Scholar
  91. Nicholas, M., Obler, L. K., Albert, M. L., & Helm-Estabrooks, N. (1985). Empty speech in Alzheimer's disease and fluent aphasia. Journal of Speech and Hearing Research, 28, 405-410.Google Scholar
  92. Nobre, A. C., Allison, T., & McCarthy, G. (1994). Word recognition in the human inferior temporal lobe. Nature (London), 372, 260-263.Google Scholar
  93. Obler, L. (1981). Review of Le Langage des dements. The Hague: Mouton, 1973. In Brain and Language, 12, 375-386.Google Scholar
  94. Penke, M., Weyerts, H., Gross, M., Zander, E., Mu¨nte, T. F., & Clahsen, H. (1997). How the brain processes complex words: an event-related potential study of German verb inflections. Cognitive Brain Research, 6, 37-52.Google Scholar
  95. Pinker, S. (1991). Rules of language. Science, 253, 530-535.Google Scholar
  96. Pinker, S. (1999). Words and rules: The ingredients of language. New York: Basic Books.Google Scholar
  97. Pinker, S., & Prince, A. (1988). On Language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73-193.Google Scholar
  98. Pinker, S., & Prince, A. (1991). Regular and irregular morphology and the psychological status of rules of grammar. Berkeley Linguistics Society, 17, 230-251.Google Scholar
  99. Pinker, S., & Prince, A. (1992). Regular and irregular morphology and the psychological status of rules of grammar. Paper presented at the 17th Annual Meeting of the Berkeley Linguistics Society: General Session and Parasession on the Grammar of Event Structure, Berkeley, California.Google Scholar
  100. Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56-115.Google Scholar
  101. Plunkett, K., & Marchman, V. (1991). U-shaped learning and frequency effects in a multilayered perceptron: Implications for child language acquisition. Cognition, 38, 43-102.Google Scholar
  102. Plunkett, K., & Marchman, V. (1993). From rote learning to system building: Acquiring verb morphology in children and connectionist nets. Cognition, 48, 21-69.Google Scholar
  103. Prasada, S., & Pinker, S. (1993). Generalization of regular and irregular morphological patterns. Language and Cognitive Processes, 8, 1-56.Google Scholar
  104. Prasada, S., Pinker, S., & Snyder, W. (1990, November 16-18). Some evidence that irregular forms are retrieved from memory but regular forms are rule-generated. Paper presented at the 31st Annual Meeting of the Psychonomics Society, New Orleans, Louisiana.Google Scholar
  105. Preuss, T. M. (1995). The argument from animals to humans in cognitive neuroscience. In M. S. Gazzaniga (tEd.), The cognitive neurosciences (pp. 1227-1241). Cambridge, Massachusetts: MIT Press.Google Scholar
  106. Price, B. H., Gurvit, H., Weintraub, S., Geula, C., Leimkuhler, E., & Mesulam, M. (1993). Neuropsychological patterns and language deficits in 20 consecutive cases of autopsyconfirmed Alzheimer's disease. Archives of Neurology, 50, 931-937.Google Scholar
  107. Rhee, J., Pinker, S., & Ullman, M. T. (1999). A magnetoencephalographic study of English past tense production. Journal of Cognitive Neuroscience, Supplement.Google Scholar
  108. Roberts, A. C., Robbins, T. W., & Weiskrantz, L. (Eds.). (1998). The prefrontal cortex: Executive and cognitive functions. Oxford: Oxford University Press.Google Scholar
  109. Rochon, E., Waters, G. S., & Caplan, D. (1994). Sentence comprehension in patients with Alzheimer's disease. Brain and Language, 46, 329-349.Google Scholar
  110. Rubenstein, H., Garfield, L., & Milliken, J. A. (1970). Homographic entries in the internal lexicon. Journal of Verbal Learning and Verbal Behavior, 9, 487-492.Google Scholar
  111. Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of English verbs. In J. L. McClelland, D. E. Rumelhart, & PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructures of cognition (Vol. 2, pp. 216-271). Cambridge, Massachusetts: Bradford/MIT press.Google Scholar
  112. Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and neostriatal dysfunction in man. Brain, 111, 941-959.Google Scholar
  113. Schacter, D. L., & Tulving, E. (Eds.). (1994). Memory systems 1994. Cambridge, Massachusetts: The MIT Press.Google Scholar
  114. Schwartz, M. F., Marin, O. S. M., & Saffran, E. M. (1979). Dissociations of language function in dementia: A case study. Brain and Language, 7, 277-306.Google Scholar
  115. Seidenberg, M. (1992). Connectionism without tears. In S. Davis (Ed.), Connectionism: Theory and Practice (pp. 84-137). New York: Oxford University Press.Google Scholar
  116. Seidenberg, M. S. (1997). Language acquisition and use: Learning and applying probabilistic constraints. Science, 275, 1599-1603.Google Scholar
  117. Seidenberg, M. S., & Daugherty, K. G. (1992). The psychological reality of grammatical rules: Linguistic, historical, chronometric, psychophysical, computational, developmental, neurological, and genetic evidence-NOT!!!. Paper presented at the Reality of Linguistic Rules Conference, Milwaukee, Wisconsin.Google Scholar
  118. Seidenberg, M. S., & Hoeffner, J. H. (1998). Evaluating behavioral and neuroimaging data on past tense production. Language, 74, 104-122.Google Scholar
  119. Shimamura, A. P. (1995). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 803-813). Cambridge, Massachusetts: MIT Press.Google Scholar
  120. Simos, P. G., Basile, L. F. H., & Papanicolaou, A. C. (1997). Source localization of the N400 response in a sentence-reading paradigm using evoked magnetic fields and magnetic resonance imaging. Brain Research, 762, 29-39.Google Scholar
  121. Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453-495.Google Scholar
  122. Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences USA, 93, 13515-13522.Google Scholar
  123. Stemberger, J. P., & MacWhinney, B. (1988). Are inflected forms stored in the lexicon? In M. Hammond & M. Noonan (Eds.), Theoretical Morphology: Approaches in modern linguistics (pp. 101-116). New York: Academic Press.Google Scholar
  124. Suzuki, W. A., & Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferants. Journal of Comparative Neurology, 350, 497-533.Google Scholar
  125. Ullman, M. T. (1993). The computation of inflectional morphology. Unpublished doctoral dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  126. Ullman, M. T. (1999a). Acceptability ratings of regular and irregular past tense forms: Evidence for a dual-system model of language from word frequency and phonological neighbourhood effects. Language and Cognitive Processes, 14, 47-67.Google Scholar
  127. Ullman, M. T. (1999b). The functional neuroanatomy of inflectional morphology. Behavioral and Brain Sciences, 22, 1041-1042.Google Scholar
  128. Ullman, M. T. (in press). Evidence that lexical memory is part of the temporal lobe declarative memory, and that grammatical rules are processed by the frontal/basal-ganglia procedural system. Brain and Language.Google Scholar
  129. Ullman, M. T. (unpublished manuscript) Consistency and blocking in English past tense: Evidence for a dual-system model.Google Scholar
  130. Ullman, M. T., Bergida, R., & O'Craven, K. (1997). Distinct fMRI activation patterns for regular and irregular past tense. NeuroImage, 5, S549.Google Scholar
  131. Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., & Pinker, S. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9, 266-276.Google Scholar
  132. Ullman, M. T., Corkin, S., Pinker, S., Coppola, M., Locascio, J., & Growdon, J. H. (1994). The neural structures subserving language: Evidence from inflectional morphology. Paper presented at the 1st Annual Meeting of the Cognitive Neuroscience Society, San Francisco, California.Google Scholar
  133. Ullman, M. T., Corkin, S., Pinker, S., Coppola, M., Locascio, J., & Growdon, J. H. (1993). Neural modularity in language: Evidence from Alzheimer's and Parkinson's diseases. Society for Neuroscience Abstracts, 19, 1806.Google Scholar
  134. Ullman, M. T., & Gopnik, M. (1994). Inflectional morphology in familial language impair-ment. Paper presented at the 19th Annual Boston University Conference on Language Development, Boston, Massachusetts.Google Scholar
  135. Ullman, M. T., & Gopnik, M. (1999). Inflectional morphology in a family with inherited specific language impairment. Applied Psycholinguistics, 20, 51-117.Google Scholar
  136. Ullman, M. T., Hickok, G., & Pinker, S. (1995). Irregular and regular inflectional morphology in an aphasic. Brain and Cognition, 28, 88-89.Google Scholar
  137. Ullman, M. T., Izvorski, R., Love, T., Yee, E., Swinney, D., & Hickok, G. (in press). Neural correlates of lexicon and grammar: Evidence from the production, reading, and judgment of inflection in aphasia. Brain and Language.Google Scholar
  138. van der Lely, H. J. K., & Ullman, M. T. (1996). The computation and representation of past-tense morphology in specifically language impaired and normally developing children. Proceedings of the 20th Annual Boston University Conference on Language Development, pp. 804-815.Google Scholar
  139. van der Lely, H. K. J., & Ullman, M. T. (in press). Past tense morphology in specifically language impaired and normally developing children. Language and Cognitive Processes.Google Scholar
  140. Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences USA, 92, 930-933.Google Scholar
  141. Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., Frackowiak, R. S., Friston, K. J., Pembrey, M. E., Mishkin, M., Gadian, D. G., & Passingham, R. E. (1998). Neural basis of an inherited speech and language disorder. Proceedings of the National Academy of Sciences USA, 95(21), 12695-12700.Google Scholar
  142. Vennemann, T. (1971). Natural generative phonology. Paper presented at the Linguistics Society of America Annual Meeting, St. Louis, Missouri.Google Scholar
  143. Waters, G. S., Caplan, D., & Rochon, E. (1995). Processing capacity and sentence comprehension in patients with Alzheimer's disease. Cognitive Neuropsychology, 12, 1-30.Google Scholar
  144. Weyerts, H., Penke, M., Dohrn, U., Clahsen, H., & Münte, T. F. (1997). Brain potentials indicate differences between regular and irregular German plurals. Neuroreport, 8, 957-962.Google Scholar
  145. Whitaker, H. (1976). A case of the isolation of the language function. In H. Whitaker & H. A. Whitaker (Eds.), Studies in neurolinguistics (Vol. 2, pp. 1-58). New York: Academic Press.Google Scholar
  146. Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558-584.Google Scholar
  147. Winocur, G., & Moscovitch, M. (1990). Hippocampal and prefrontal cortex contributions to learning and memory: Analysis of lesion and aging effects on maze learning in rats. Behavioral Neuroscience, 104, 544-551.Google Scholar
  148. Young, A. B., & Penney, J. B. (1993). Biochemical and functional organization of the basal ganglia. In J. Jankovic & E. Tolosa (Eds.), Parkinson's disease and movement disorders, 2nd ed, (pp. 1-11). Baltimore, Maryland: Williams & Wilkins.Google Scholar
  149. Zola, S. (1997). Amnesia: neuroanatomic and clinical aspects. In T. E. Feinberg & M. J. Farah (Eds.), Neurology and neuropsychology (pp. 447-461). New York: McGraw-Hill.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Michael T. Ullman
    • 1
  1. 1.Departments of Neuroscience and LinguisticsGeorgetown University, Research BuildingWashington, DC

Personalised recommendations