Advertisement

Synthese

, Volume 125, Issue 3, pp 341–383 | Cite as

Structures And Structuralism In Contemporary Philosophy Of Mathematics

  • Erich H. Reck
  • Michael P. Price
Article

Abstract

In recent philosophy of mathematics avariety of writers have presented ``structuralist''views and arguments. There are, however, a number ofsubstantive differences in what their proponents take``structuralism'' to be. In this paper we make explicitthese differences, as well as some underlyingsimilarities and common roots. We thus identifysystematically and in detail, several main variants ofstructuralism, including some not often recognized assuch. As a result the relations between thesevariants, and between the respective problems theyface, become manifest. Throughout our focus is onsemantic and metaphysical issues, including what is orcould be meant by ``structure'' in this connection.

Keywords

Main Variant Contemporary Philosophy Common Root Metaphysical Issue Respective Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awodey, S.: 1996, 'Structure in Mathematics and Logic: A Categorical Perspective', Philosophica Mathematica 3, 209–237.Google Scholar
  2. Balzer, W., C. U. Moulines, and J. Sneed: 1987, An Architectonic for Science. The Structuralist Program, Reidel, Dordrecht.Google Scholar
  3. Benacerraf, P.: 1965, 'What Numbers Could Not Be', Philosophical Review 74, 47–73; reprinted in Benacerraf and Putnam (1983), pp. 272–294.Google Scholar
  4. Benacerraf, P. and H. Putnam (eds.): 1983, Philosophy of Mathematics, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  5. Bourbaki, N.: 1950, 'The Architecture of Mathematics', The American Mathematical Monthly 57, 221–232.Google Scholar
  6. Bourbaki, N.: 1954–56, Eléments de Mathématics: Livre I, Hermann, Paris; English trans. Theory of Sets (1968).Google Scholar
  7. Burgess, J.: 1998, "Occam's Razor and Scientific Method', in M. Schirn (ed.), The Philosophy of Mathematics Today, Clarendon Press, Oxford, pp. 195–214.Google Scholar
  8. Corry, L.: 1992, 'Nicolas Bourbaki and the Concept of Mathematical Structure', Synthese 92, 315–348.Google Scholar
  9. Corry, L.: 1996, Modern Algebra and the Rise of Mathematical Structures, Birkhäuser, Basel.Google Scholar
  10. Dedekind, R.: 1872, 'Stetigkeit und Irrationale Zahlen'; English trans. 'Continuity and Irrational Numbers', in Dedekind (1963), pp. 1–27.Google Scholar
  11. Dedekind, R.: 1887, 'Was sind und was sollen die Zahlen?'; English trans. 'The Nature and Meaning of Numbers', in Dedekind (1963), pp. 29–115.Google Scholar
  12. Dedekind, R.: 1963, Essays on the Theory of Numbers, Dover, New York.Google Scholar
  13. Dieudonné, J.: 1979, 'The Difficult Birth of Mathematical Structures (1840–1940)', in V. Mathieu and P. Rossi (eds.), Scientific Culture in the Contemporary World, Scientia, Milano, pp. 7–23.Google Scholar
  14. Dummett, M.: 1991, Frege. Philosophy of Mathematics, Harvard University Press, Cambridge, MA.Google Scholar
  15. Enderton, H.: 1977, Elements of Set Theory, Academic Press, San Diego.Google Scholar
  16. Field, H.: 1980, Science without Numbers. A Defense of Nominalism, Princeton University Press, Princeton.Google Scholar
  17. Frege, G.: 1906, 'Ñber die Grundlagen der Geometrie. I–III', reprinted in Kleine Schriften, Hildesheim: Olms, 1990, pp. 281–323; English trans. 'On the Foundations of Geometry: Second Series', in Collected Papers on Mathematics, Logic, and Philosophy, B. McGuinness (ed.), Blackwell, Oxford, 1984, pp. 293–340.Google Scholar
  18. Gleason, A. M.: 1991, Fundamentals of Abstract Analysis, Bartlett, Boston.Google Scholar
  19. Goodman, N. and W. V. Quine: 1947, 'Steps towards a Constructive Nominalism', Journal of Symbolic Logic 12, 97–122.Google Scholar
  20. Hellman, G.: 1989, Mathematics without Numbers, Oxford University Press, Oxford.Google Scholar
  21. Hellman, G.: 1990a, 'Modal-Structural Mathematics', in A. D. Irvine (ed.), Physicalism in Mathematics, Kluwer, Dordrecht, pp. 307–330.Google Scholar
  22. Hellman, G.: 1990b, 'Towards a Modal-Structural Interpretation of Set Theory', Synthese 84, 409–443.Google Scholar
  23. Hellman, G.: 1996, 'Structuralism Without Structures', Philosophia Mathematica 4, 100–123.Google Scholar
  24. Hodges, W.: 1986, 'Truth in a Structure', Proceedings of the Aristotelian Society, new series 86, pp. 135–151.Google Scholar
  25. Jubien, M.: 1977, 'Ontology and Mathematical Truth', Noûs 11, 133–150.Google Scholar
  26. Kalderon, M.: 1996, 'What Numbers Could Be (And, Hence, Necessarily Are)', Philosophia Mathematica 3, 238–255.Google Scholar
  27. Mac Lane, S.: 1971, Categories for the Working Mathematician, Springer, New York.Google Scholar
  28. Mac Lane, S.: 1986, Mathematics. Form and Function, Springer, New York.Google Scholar
  29. Mac Lane, S.: 1996, 'Structure in Mathematics', Philosophia Mathematica 4, 174–183.Google Scholar
  30. McLarty, C.: 1992, Elementary Categories, Elementary Toposes, Clarendon, Oxford.Google Scholar
  31. McLarty, C.: 1993, 'Numbers Can Be Just What They Have To Be', Noûs 27, 487–498.Google Scholar
  32. Parsons, C.: 1990, 'The Structuralist View of Mathematical Objects', Synthese 84, 303–346.Google Scholar
  33. Parsons, C.: 1997, 'Structuralism and the Concept of Set', in E. Aggazi and G. Darvas (eds.), Philosophy of Mathematics Today, Kluwer, Amsterdam, pp. 171–194.Google Scholar
  34. Poincarè, H.: 1905, Science and Hypothesis, (reprinted) Dover, New York, 1952.Google Scholar
  35. Putnam, H.: 1967, 'Mathematics without Foundations', Journal of Philosophy 64, 5–22; reprinted in Benacerraf and Putnam (1983), pp. 295–311.Google Scholar
  36. Quine, W. V.: 1969, 'Ontological Relativity', in Ontological Relativity and Other Essays, New Columbia University Press, New York, pp. 26–68.Google Scholar
  37. Resnik, M.: 1981, 'Mathematics as a Science of Patterns: Ontology and Reference', Noûs 15, 529–550.Google Scholar
  38. Resnik, M.: 1982, 'Mathematics as a Science of Patterns: Epistemology', Noûs 16, 95–105.Google Scholar
  39. Resnik, M.: 1988, 'Mathematics from the Structural Point of View', Revue International de Philosophie 42(167), 400–424.Google Scholar
  40. Resnik, M.: 1997, Mathematics as a Science of Patterns, Oxford University Press, Oxford.Google Scholar
  41. Rheinwald, R.: 1984, Der Formalismus und seine Grenzen, Hain, Königstein.Google Scholar
  42. Russell, B.: 1901, 'Recent Work in the Philosophy of Mathematics', The International Monthly; reprinted as 'Mathematics and the Metaphysicians' in Mysticism and Logic, Allen and Unwin, London, pp. 75–95.Google Scholar
  43. Russell, B.: 1903, Principles of Mathematics, Allen and Unwin, London.Google Scholar
  44. Russell, B.: 1919, Introduction to Mathematical Philosophy, Allen and Unwin, London.Google Scholar
  45. Shapiro, S.: 1983, 'Mathematics and Reality', Philosophy of Science 50, 523–548.Google Scholar
  46. Shapiro, S.: 1989, 'Structure and Ontology', Philosophical Topics 17, 145–171.Google Scholar
  47. Shapiro, S.: 1997, Philosophy of Mathematics. Structure and Ontology, Oxford University Press, Oxford.Google Scholar
  48. Simons, P.: 1987, Parts. A Study in Ontology, Clarendon Press, Oxford.Google Scholar
  49. Sneed, J.: 1971, The Logical Structure of Mathematical Physics, Reidel, Dordrecht.Google Scholar
  50. Stein, H.: 1988, 'Logos, Logic and Logistiké: Some Philosophical Remarks on Nineteenth Century Transformations in Mathematics', in W. Aspray and P. Kitcher (eds.), History and Philosophy of Mathematics, University of Minnesota Press, Minneapolis, pp. 238–259.Google Scholar
  51. Steiner, M.: 1975, Mathematical Knowledge, Cornell University Press, Ithaca.Google Scholar
  52. Suppes, P. C.: 1957, Introduction to Logic, Van Nostrand, New York.Google Scholar
  53. Tait, W. W.: 1986a, 'Truth and Proof: The Platonism of Mathematics', Synthese 69, 341–370.Google Scholar
  54. Tait, W. W.: 1986b, 'Plato's Second Best Method', Review of Metaphysics 39, 455–482.Google Scholar
  55. Tait, W. W.: 1996, 'Frege versus Cantor and Dedekind: On the Concept of Number', in M. Schirn (ed.), Frege: Importance and Legacy, DeGruyter, Berlin, pp. 70–113.Google Scholar
  56. Van Dalen, D.: 1994), Logic and Structure, 3rd ed., Springer, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Erich H. Reck
    • 1
  • Michael P. Price
    • 2
  1. 1.Department of PhilosophyUniversity of CaliforniaRiversideU.S.A.
  2. 2.Department of PhilosophyUniversity of ChicagoChicagoU. S. A.

Personalised recommendations