Space Science Reviews

, Volume 85, Issue 1–2, pp 161–174

Standard Solar Composition

  • N. Grevesse
  • A.J. Sauval
Article

Abstract

We review the current status of our knowledge of the chemical composition of the Sun, essentially derived from the analysis of the solar photospheric spectrum. The comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances. They are used to construct a Standard Abundance Distribution.

Sun: abundances Meteorites: abundances Solar spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Grevesse, N.: 1989, ‘Abundances of the elements: meteoritic and solar', Geochim. Cosmochim. Acta 53, 197–214.CrossRefADSGoogle Scholar
  2. Anstee, S.D. and O'Mara, B.J.: 1995, ‘Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen', Mon. Not. R. Astron. Soc. 276, 859–866.ADSGoogle Scholar
  3. Anstee, S.D., O'Mara, B.J. and Ross, J.E.: 1997, ‘A determination of the solar abundance of iron from the strong lines of Fe I', Mon. Not. R. Astron. Soc. 284, 202–212.ADSGoogle Scholar
  4. Balachandran, S.C. and Bell, R.A.: 1998, ‘The lack of beryllium depletion in the Sun and implications for stellar mixing', Nature, in press.Google Scholar
  5. Barklem, P.S. and O'Mara, B.J.: 1997, ‘The broadening of p-d and d-p transitions by collisions with neutral hydrogen atoms', Mon. Not. R. Astron. Soc. 290, 102–106.ADSGoogle Scholar
  6. Barklem, P.S., O'Mara, B.J. and Ross, J.E.: 1998, ‘The broadening of d-f and f-d transitions by collisions with neutral hydrogen atoms', Mon. Not. R. Astron. Soc., in press.Google Scholar
  7. Blöcker, T., Holweger, H., Freytag, B., Herwig, F., Ludwig, H.-G. and Steffen, M.: 1998, ‘Lithium depletion in the Sun: a study of mixing based on hydrodynamical simulations', Space Sci. Rev., this volume.Google Scholar
  8. Bochsler, P.: 1998, ‘Structure of the solar wind and compositional differences,', Space Sci. Rev., this volume.Google Scholar
  9. Bord, D.J., Cowley, C.R. and Mirijanian, D.: 1998, ‘A re-evaluation of the abundance of lutetium in the Sun', Solar Phys. 178, 221–237.CrossRefADSGoogle Scholar
  10. Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F.: 1957, ‘Synthesis of the elements in stars', Rev. Mod. Phys. 29, 547–650.CrossRefADSGoogle Scholar
  11. Cameron, A.G.W.: 1957, ‘Nuclear reactions in stars and nucleogenesis', Pub. Astr. Soc. Pac. 69, 201–222. (also Chalk River Report CRL-41)CrossRefADSGoogle Scholar
  12. Carlsson, M., Rutten, R.J., Bruls, J.H. and Shchukina, N.G.: 1994, ‘The non-LTE formation of Li I lines in cool stars', A&A 288, 860–883.ADSGoogle Scholar
  13. Christensen-Dalsgaard, J.: 1998, ‘Standard model and composition', Space Sci. Rev., this volume.Google Scholar
  14. Cowley, C.R.: 1995, An introduction to cosmochemistry, Cambridge University Press.Google Scholar
  15. Den Hartog, E.A., Curry, J.J., Wickliffe, M.E. and Lawler, J.E.: 1998, ‘Spectroscopic Data for the 6s6p 3 P 1 level of Lu II for the determination of the solar lutetium abundance', Solar Phys. 178, 239–244.CrossRefADSGoogle Scholar
  16. Dziembowski, W.: 1998, ‘Shortcomings of standard solar models', Space Sci. Rev., this volume.Google Scholar
  17. Feldman, U.: 1998, ‘FIP effect: optical observations', Space Sci. Rev., this volume.Google Scholar
  18. Gabriel, A.H., Culhane, J.L., Patchett, B. E., Breevelt, E. R., Lang, J., Parkinson, J. H., Payne, J. and Norman, K.: 1995, ‘Spacelab 2 measurement of the solar coronal helium abundance', Adv. Space Res. 15, 63–67.CrossRefADSGoogle Scholar
  19. Gabricl, M.: 1997, ‘Influence of heavy element and rotationally induced diffusions on the solar models', A&A 327, 771–778.ADSGoogle Scholar
  20. Geiss, J.: 1998, ‘Solar wind abundance measurements: constraints on the FIP mechanism', Space Sci. Rev., this volume.Google Scholar
  21. Goldberg, L., Müller, E.A. and Aller, L.H.: 1960, ‘The abundances of the elements in the solar atmosphere', ApJ Suppl. Ser. 5,No 45, 1–137 (GMA).Google Scholar
  22. Goldschmidt, V.M.: 1937, ‘Geochemische Verteilungsgestze der Elemente, IX. Die Mengenverhältnisse der Elemente und der Atom-Arten', Skrifter Norske Videnskaps-Akad. Oslo, Math. Naturw. Kl. Nr. 4, 99–101.Google Scholar
  23. Grevesse, N. and Noels, A.: 1993, ‘Atomic data and the spectrum of the solar photosphere', Physica Scripta T47, 133–138.ADSGoogle Scholar
  24. Grevesse, N. and Sauval, A.J.: 1994, ‘Molecules in the Sun and Molecular data', in Molecular Opacities in the Stellar Environment, ed U.G. Jørgensen, Lecture Notes in Physics, Springer-Verlag 428, 196–209.Google Scholar
  25. Grevesse, N., Noels, A. and Sauval, A.J.: 1995, ‘Atomic and molecular data in solar photospheric spectroscopy', in Laboratory and Astronomical High Resolution Spectra, eds A.J. Sauval, R. Blomme and N. Grevesse, ASP Conference Series 81, 74–87.Google Scholar
  26. Grevesse, N., Noels, A. and Sauval, A.J.: 1996, ‘Standard Abundances', in Cosmic Abundances, eds S.S. Holt and G. Sonneborn, ASP Conference Series 99, 117–126.Google Scholar
  27. Grevesse, N. and Sauval, A.J.: 1998, ‘An improved photospheric model based on Fe I lines', A&A, in preparation.Google Scholar
  28. Gustafsson, B.: 1998, ‘How sunlike is the Sun?', Space Sci. Rev., this volume.Google Scholar
  29. Hénoux, J.C.: 1998, ‘FIP: theory', Space Sci. Rev., this volume.Google Scholar
  30. Holweger, H.: 1967, ‘Ein empirisches Modell des Sonnenatmosphäre mit tokalem thermodynamischen Gleichgewicht', Z. Astrophys. 65, 365–417.ADSGoogle Scholar
  31. Holweger, H.: 1996, ‘Solar element abundance, non-LTE line formation in cool stars and atomic data', Physica Scripta T65, 151–157.ADSGoogle Scholar
  32. Holweger, H. and Müller, E.A.: 1974, ‘The Photospheric Barium Spectrum: Solar Abundance and Collision Broadening of Ba II Lines by Hydrogen', Solar Physics 39, 19–30.CrossRefADSGoogle Scholar
  33. Kiselman, D. and Carlsson, M.: 1996, ‘The NETE formation of neutral-boron lines in cool stars', A&A 311, 680–689.ADSGoogle Scholar
  34. Kostik, R.I., Shchukina, N.G. and Rutten, R.J.: 1996, ‘The solar iron abundance: not the last word', A&A 305, 325–342.ADSGoogle Scholar
  35. Kurucz, R.L.: 1995, ‘The solar spectrum: atlases and line identifications', in Laboratory and Astronomical High Resolution Spectra, eds A.J. Sauval, R. Blomme and N. Grevesse, ASP Conference Series 81, 17–31.Google Scholar
  36. Minnaert, M. and Mulders, G.F.W.: 1931, ‘Dopplereffekt und Dämpfung bei den Fraunhoferschen Linien', Z. Astrophys. 2, 165–181.MATHADSGoogle Scholar
  37. Minnaert, M. and Slob, C.: 1931, ‘Die Totalintensitäten der Fraunhoferschen Linien', Proc. Kon. Akad. van Wetens. Amsterdam 34, 542–549.MATHGoogle Scholar
  38. Pagel, B.E.J.: 1973, ‘Stellar and solar abundances', Space Science Reviews 15, 1–21.CrossRefADSGoogle Scholar
  39. Pagel, B.E.J.: 1997, Nucleosynthesis and chemical evolution of galaxies, Cambridge University Press.Google Scholar
  40. Palme, H. and Beer, H.: 1993, ‘Abundances of the elements in the solar system', Landolt-Börnstein, Group VI, Astronomy and Astrophysics, ed. H.H. Voigt, Springer-Verlag, Berlin, 3 (Extension and supplement to Vol. 2, Subvol. a) 196–221.Google Scholar
  41. Peter, H.: 1998, ‘Element fractionation in the solar chromosphere driven by ionization-diffusion processes', Space Sci. Rev., this volume.Google Scholar
  42. Ramaty, R.: 1996, ‘Abundance determination from gamma ray spectroscopy', in Cosmic Abundances, eds S.S. Holt and G. Sonneborn, ASP Conference Series 99, 377–380.Google Scholar
  43. Raymond, J.: 1998, ‘Structure of the corona and compositional differences', Space Sci. Rev., this volume.Google Scholar
  44. Reames, D.V.: 1998, ‘Solar energetic particles: sampling coronal abundances', Space Sci. Rev., this volume.Google Scholar
  45. Rogers, F.: 1998, ‘Opacity of stellar matter', Space Sci. Rev., this volume.Google Scholar
  46. Russell, H.N.: 1929, ‘On the composition of the Sun's atmosphere', ApJ 70, 11–82.CrossRefADSGoogle Scholar
  47. Rutten, R.J.: 1998, ‘The lower atmosphere', Space Sci. Rev., this volume.Google Scholar
  48. Sauval, A.J. and Grevesse, N.: 1998, ‘Revised solar abundances of carbon, nitrogen and oxygen', A&A, in preparation.Google Scholar
  49. Solanki, S.: 1998, ‘Structure of the photosphere', Space Sci. Rev., this volume.Google Scholar
  50. Strömgren, B.: 1940, ‘On the chemical composition of the solar atmosphere', in Festschrift für Elis Strömgren, ed K. Lundmark, Einar Munksgaard, Kopenhagen, 218–257, (Publ. Medd. Københavns Obs. Nr. 127, 218–257).Google Scholar
  51. Suess, H.E.: 1988, ‘V.M. Goldschmidt and the origin of the elements', Applied Geochem. 3, 385–391.CrossRefGoogle Scholar
  52. Suess, H.E. and Urey, H.C.: 1956, ‘Abundances of the elements', Rev. Mod. Phys. 28, 53–74.CrossRefADSGoogle Scholar
  53. Trimble, V.: 1975, ‘The origin and abundances of the elements', Rev. Mod. Phys. 47, 877–976.CrossRefADSGoogle Scholar
  54. Trimble, V.: 1991, ‘The origin and abundances of the chemical elements revisited', The Astron. Astrophys. Rev. 3, 1–46.CrossRefADSGoogle Scholar
  55. Trimble, V.: 1996, ‘Cosmic abundances: past, present, and future', in Cosmic Abundances, eds S.S. Holt and G. Sonneborn, ASP Conference Series 99, 3–35.Google Scholar
  56. Turck-Chièze, S.: 1995, ‘The role of abundances in the solar interior models', Adv. Space Res. 15, 85–94.CrossRefADSGoogle Scholar
  57. Turck-Chièze, S.: 1998, ‘Towards a detailed view of the solar nuclear core', Space Sci. Rev., this volume.Google Scholar
  58. Turcotte, S. and Christensen-Dalsgaard, J.: 1998, ‘Solar models with consistent diffusion and monochromatic opacities', Space Sci. Rev., this volume.Google Scholar
  59. Unsöld, A.: 1948, ‘Quantitative Analyse der Sonnenatmosphäre', Z. Astrophys. 24, 306–329.Google Scholar
  60. Vauclair, S.: 1998, ‘Microphysics: element segregation', Space Sci. Rev., this volume.Google Scholar
  61. von Zahn, U. and Hunten, D.M.: 1996, ‘The helium mass fraction in Jupiter's atmosphere', Science 272, 849–851.ADSGoogle Scholar
  62. Widing, K.G.: 1997, ‘Emerging active regions on the Sun and the photospheric abundance of neon', ApJ 480, 400–405.CrossRefADSGoogle Scholar
  63. Wieler, R.: 1998, ‘Lunar samples and meteorites as archive for solar wind noble gases', Space Sci. Rev., this volume.Google Scholar
  64. Wildt, R.: 1939, ‘Electron affinity in astrophysics', ApJ 89, 295–301, and ‘Negative ions of hydrogen and the opacity of stellar atmospheres', ApJ 90, 611–620.CrossRefADSGoogle Scholar
  65. Young, P.R.: 1998, ‘Atomic physics for atmospheric composition measurements', Space Sci. Rev., this volume.Google Scholar
  66. Young, P.R., Mason, H.E., Keenan, F.P. and Widing, K.G.: 1997, ‘The Ar/Ca relative abundance in solar coronal plasma', ApJ 323, 243–249.ADSGoogle Scholar
  67. Zalm, J.-P.: 1998, ‘Macrophysics: large-scale advection, turbulent diffusion, wave transport', Space Sci. Rev., this volume.Google Scholar
  68. Zurbuchen, T.H., Fisk, L.A., Gloeckler, G. and Schwadron, N.A.: 1998, ‘Elemental enhancement as a coronal effect', Space Sci. Rev., this volume.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • N. Grevesse
    • 1
  • A.J. Sauval
    • 1
  1. 1.Institut d'Astrophysique et de GéophysiqueUniversité de LiègeLiègeBelgium (

Personalised recommendations