Space Science Reviews

, Volume 88, Issue 3–4, pp 529–562 | Cite as

Interplanetary origin of geomagnetic storms

  • Walter D. Gonzalez
  • Bruce T. Tsurutani
  • Alicia L. Clúa de Gonzalez


Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process.

During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs).

Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms.


Solar Wind Solar Cycle Coronal Hole Magnetic Storm Geomagnetic Storm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasofu, S.-I.: 1981, 'Energy Coupling between the Solar Wind and the Magnetosphere', Space Sci. Rev. 28, 111.CrossRefADSGoogle Scholar
  2. Axford, W. I. and Hines, C. O.: 1961, 'A Unifying Theory of High Latitude Geophysical Phenomena and Geomagnetic Storms', Can. J. Phys. 39, 1433.MathSciNetADSGoogle Scholar
  3. Behannon, K. W., Burlaga, L. F. and Hewish, A.: 1991, 'Structure and Evolution of Compound Streams at _ 1 AU', J. Geophys. Res. 96, 21213.ADSGoogle Scholar
  4. Belcher, J. W. and Davis, L., Jr.: 1971, 'Large Amplitude Alfvén Waves in the Interplanetary Medium, 2', J. Geophys. Res. 76, 3534.ADSGoogle Scholar
  5. Bell, J. T., Gussenhoven, M. S. and Mullen, E. G.: 1997, 'Super Storms', J. Geophys. Res. 102, 14189.CrossRefADSGoogle Scholar
  6. Borrini, G., Gosling, J. T., Bame, S. J. and Feldman, W. C.: 1982, 'An Analysis of Shock Wave Disturbances Observed at 1 AU from 1971 through 1978', J. Geophys. Res. 87, 4365.ADSGoogle Scholar
  7. Borovsky, J. E., Thomsen, M. F. and McComas, D. J.: 1997, 'The Superdense Plasma Sheet: Plasmaspheric Origin, SolarWind Origin, or Ionospheric Origin?', J. Geophys. Res. 102, 22089.CrossRefADSGoogle Scholar
  8. Bothmer, V. and Schwenn, R.: 1995, 'The Interplanetary and Solar Causes of Major Geomagnetic Storms', J. Geomag. Geolectr. 47, 1127.Google Scholar
  9. Bravo, S., Cruz-Abeyro, A. L. and Rojas, D.: 1998, 'The Spatial Relationship between Active Regions and Coronal Holes and the Occurrence of Intense Geomagnetic Storms through the Solar Activity Cycle', Ann. Geophys. 16, 49.ADSGoogle Scholar
  10. Burlaga, L. F.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York.Google Scholar
  11. Burlaga, L. F. and Lepping, R. P.: 1977, 'The Causes of Recurrent Geomagnetic Storms', Planetary Space Phys. 25, 1151.CrossRefADSGoogle Scholar
  12. Burlaga, L. F., Pizzo, V., Lazarus, A. and Gazis, P.: 1985, 'Stream Dynamics between 1 AU and 2 AU: A Comparison of Observations and Theory', J. Geophys. Res. 90, 7317.ADSGoogle Scholar
  13. Burlaga, L. F., Sittler, E., Mariani, F. and Schwenn, R.: 1981, 'Magnetic Loop Behind an Interplanetary Shock: Voyager, Helios and IMP-8 Observations', J. Geophys. Res. 86, 6673.ADSGoogle Scholar
  14. Burlaga, L. F., Behannon, K.W. and Klein, L. W.: 1987, 'Compound Streams, Magnetic Clouds and Major Geomagnetic Storms', J. Geophys. Res. 92, 5725.ADSGoogle Scholar
  15. Burlaga, L. F., Fitzenreiter, R., Lepping, R. P., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R. P. and Larson, D. E.: 1998, 'A Magnetic Cloud Containing Prominence Material: January 1997', J. Geophys. Res. 103, 277.CrossRefADSGoogle Scholar
  16. Cane, H. V. and Richardson, I. G.: 1997, 'What Caused the Large Geomagnetic Storm of November 1978?', J. Geophys. Res. 102, 17445.CrossRefADSGoogle Scholar
  17. Chen, L. and Hasegawa, A.: 1974, 'A Theory of Long-Period Magnetic Pulsations, 1), Steady State Excitation of Field-Line Resonances', J. Geophys. Res. 79, 1024.ADSGoogle Scholar
  18. Choe, G. S., LaBelle-Hamer, N., Tsurutani, B. T. and Lee, L. C.: 1992, 'Identification of a Driver Gas Boundary Layer', EOS Trans. Amer. Geophys. Union 73, 485.Google Scholar
  19. ClÚa de Gonzalez, A. L., Gonzalez, W. D., Dutra, S. L. G. and Tsurutani, B. T.: 1993, 'Periodic Variation in the Geomagnetic Activity: a Study Based on the Ap Index', J. Geophys. Res. 98, 9215.ADSGoogle Scholar
  20. ClÚa de Gonzalez, A. L., Silbergleit, V., Gonzalez, W. D. and Tsurutani, B. T.: 1998, 'Is the Classical Seasonal Pattern Valid for High Intensity Levels of the Geomagnetic Activity?', J. Atmospheric Terrest. Phys., submitted.Google Scholar
  21. Costello, K. A.: 1996, 'Retraining Neutral Networks for the Prediction of Dst in the Rice Magnetospheric Specification and Forecast Model', M.S. Thesis, Rice University, Houston, Texas.Google Scholar
  22. Crooker, N. V., Gosling, J. T. and Kahler, S. W.: 1998, 'Magnetic Clouds at Sector Boundaries', J. Geophys. Res. 103, 301.CrossRefADSGoogle Scholar
  23. Dryer, M.: 1994, 'Interplanetary Studies: Propagation of Disturbances between the Sun and the Magnetosphere', Space Sci. Rev. 67, 363.CrossRefADSGoogle Scholar
  24. Dungey, J. W.: 1961, 'Interplanetary Magnetic Field and the Auroral Zones', Phys. Rev. Lett. 6, 47.CrossRefADSGoogle Scholar
  25. Farrugia, C. J., Burlaga, L. F., Osherovich, V. A., Richardson, I. G., Freeman, M. P., Lepping, R. P. and Lazarus, A. J.: 1993, 'A Study of an Expanding Interplanetary Magnetic Cloud and Its Interaction with the Earth's Magnetosphere: the Interplanetary Aspect', J. Geophys. Res. 98, 7621.ADSGoogle Scholar
  26. Farrugia, C. J., Osherovich, V. A. and Burlaga, L. F.: 1995, 'Magnetic Flux Rope versus the Spheromak as Models for Interplanetary Magnetic Clouds', J. Geophys. Res. 100, 2293.Google Scholar
  27. Farrugia, C. J., Burlaga, L. F. and Lepping, R. P.: 1997, in B. T. Tsurutani, W. D. Gonzalez and Y. Kamide (eds), 'Magnetic Clouds and the Quiet-Storm Effect at Earth', Magnetic Storms, AGU Monograph, Washington D.C., p. 91.Google Scholar
  28. Galvin, A. B., Ipavich, F.M., Gloeckler, G., Hovestadt, D., Bame, S. J., Kleckler, B., Scholer,M. and Tsurutani, B. T.: 1987, 'Solar Wind Ion Charge Status Preceding a Driver Plasma', J. Geophys. Res. 92, 12069.ADSGoogle Scholar
  29. Gold, T.: 1962, 'Magnetic Storms', Space Sci. Rev. 1, 100.CrossRefADSGoogle Scholar
  30. Gonzalez, W. D. and Tsurutani, B. T.: 1987, 'Criteria of Interplanetary Parameters Causing Intense Magnetic Storms (Dst < _100 nT)', Planetary Space Sci. 35, 1101.CrossRefADSGoogle Scholar
  31. Gonzalez, W. D. and Tsurutani, B. T.: 1992, 'Terrestrial Response to Eruptive Solar Flares: Geomagnetic Storms-A Review', in Z. Švestka, B. V. Jackson and M. E. Machado (eds), Frontiers in Physics: Eruptive Solar Flares, Springer-Verlag, Berlin, p. 277.Google Scholar
  32. Gonzalez, W. D., Tsurutani, B. T., ClÚa de Gonzalez, A. L., Tang, F., Smith, E. J. and Akasofu, S. I.: 1989, 'SolarWind-Magnetosphere Coupling During Intense Geomagnetic Storms (1978–1979)', J. Geophys. Res. 94, 883.ADSGoogle Scholar
  33. Gonzalez, W. D., ClÚa de Gonzalez, A. L., Mendes, O., Jr. and Tsurutani, B. T.: 1992, 'Difficulties in Defining Storm Sudden Commencements', EOS Trans. Amer. Geophys. Union 73, 180.ADSGoogle Scholar
  34. Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T. and Vasyliunas, V. M.: 1994, ' What is a Geomagnetic Storm?', J. Geophys. Res. 99, 5771.CrossRefADSGoogle Scholar
  35. Gonzalez, W. D., ClÚa de Gonzalez, A. L. and Tsurutani, B. T.: 1995, 'Geomagnetic Response to Large-Amplitude Interplanetary Alfvén Wave Trains', Physica Scripta 51, 140.Google Scholar
  36. Gonzalez, W. D., Tsurutani, B. T., McIntosh, P. and ClÚa de Gonzalez, A. L.: 1996, 'Coronal-Holes-Active Region-Current Sheet Association with Intense Interplanetary and Geomagnetic Phenomena', Geophys. Res. Lett. 23, 2577.CrossRefADSGoogle Scholar
  37. Gonzalez, W. D., ClÚa De Gonzalez,. L., Dal Lago, A., Tsurutani, B. T., Arballo, J. K., Lakhina, G. S., Buti, B. and Ho, G. M.: 1998, 'Magnetic Cloud Field Intensities and Solar Wind Velocities', Geophys. Res. Lett. 25, 963.CrossRefADSGoogle Scholar
  38. Gosling, J. T., Baker, D. N., Bame, S. J., Feldman, W. C. and Zwickl, R. D.: 1987, 'Bi-Directional Solar Wind Electron Heat Flux Events', J. Geophys. Res. 92, 8519.ADSGoogle Scholar
  39. Gosling, J. T., McComas, D. J., Phillips, J. L. and Bame, S. J.: 1991, 'Geomagnetic Activity Associated with Earth Passage of Interplanetary Shock Disturbances and Coronal Mass Ejections', J. Geophys. Res. 96, 7831.ADSGoogle Scholar
  40. Grande,M., Perry, C. H., Blake, J. B., Chen, M.W., Fennell, J. F. and Wilken, B.: 1996, 'Observations of Iron, Silicon, and Other Heavy Ions in the Geostationary Altitude Region During Late March 1991', J. Geophys. Res. 101, 24707.CrossRefADSGoogle Scholar
  41. Ivanov, K. G., Harschiladze, A. F., Eroshenko, E. G., and Styazhkin, V. A.: 1989, 'Configuration, Structure and Dynamics of Magnetic Clouds from Solar Flares in Light of Measurements on Board Vega 1 and Vega 2 in January-February 1986', Solar Phys. 120, 407.CrossRefADSGoogle Scholar
  42. Jackson, B. V.: 1997, 'Heliospheric Observations of Solar Disturbances and Their Potential Role in the Origin of Storms', in B. T. Tsurutani, W. D. Gonzalez and Y. Kamide (eds), Magnetic Storms, Amer. Geophys. Union Press, Washington D.C., Mon. Ser. 98, p. 59.Google Scholar
  43. Kamide, Y., Yokoyama, N., Gonzalez, W. D., Tsurutani, B. T., Brekke, A. and Masuda, S.: 1998, 'Two-Step Development of Geomagnetic Storms', J. Geophys. Res. 103, 6917.CrossRefADSGoogle Scholar
  44. Klein, L. W. and Burlaga, L. F.: 1982, 'Interplanetary Magnetic Clouds at 1 AU', J. Geophys. Res. 87, 613.ADSGoogle Scholar
  45. Kennel, C. F., Edmiston, J. P. and Hada, T.: 1985, 'A Quarter Century of Collionless Shock Research', in R. G. Stone and B. T. Tsurutani (eds), Collisionless Shocks in the Heliosphere, AGU Monograph, Ser. 34, Washington D.C., p. 1.Google Scholar
  46. Kozyra, J. U., Fok, M.-C., Jordanova, V. K. and Borovsky, J. E.: 1998, 'Relationship between Plasma Sheet Preconditioning and Subsequent Ring Current Development During Periods of Enhanced Cross-Tail Electric Field', International Conference on Substorms-4, abstract 5–02, p. 80.Google Scholar
  47. Knipp, D. J., Emery, B. A., Engebretson, N., Li, X., McAllister, A. H., Mukai, T., Kokubun, S., Reeves, G. D., Evans, D., Obara, T., Pi, X., Rosenberg, T., Weatermax, A., McHarg, M. G., Chun, F., Mosely, K., Crodescu, M., Lanzerotti, L., Rich, F. J., Sharber, J. and Wilkinson, P.: 1998, 'An Overview of the Early November 1993 Geomagnetic Storm', J. Geophys. Res. 103, 26197.CrossRefADSGoogle Scholar
  48. Legrand, J. P. and Simon, P. A.: 1991, 'A Two-Component Solar Cycle', Solar Phys. 131, 187.CrossRefADSGoogle Scholar
  49. Lepping, R. P., Burlaga, L. F., Szabo, A., Ogilvie, K.W., Mish, W. H., Vassiliadis, D., Lazarus, A. J., Steinberg, J. T., Farrugia, C. J., Janoo, L. J. and Mariani, F.: 1997, 'The Wind Magnetic Cloud and Events of October 18–20, 1995: Interplanetary Properties and Triggers for Geomagnetic Activity', J. Geophys. Res. 102, 14049.CrossRefADSGoogle Scholar
  50. Marubashi, K.: 1986, 'Structure of the InterplanetaryMagnetic Clouds and Their Solar Origins', Adv. Space Res. 6 (6), 335.CrossRefADSGoogle Scholar
  51. Newell, P. T., Meng, C.-I. and Wing, S.: 1988, 'Relation to Solar Activity of Intense Aurorae in Sunlight and Darkness', Nature 393, 342.CrossRefADSGoogle Scholar
  52. Odstrcil, D.: 1998, 'Numerical Simulation of Interplanetary Plasma Clouds Propagating Along the Heliospheric Plasma Sheath', Astrophys. Letters Commun., in press.Google Scholar
  53. Parker, E. N.: 1958, 'Interaction of Solar Wind with the Geomagnetic Field', Phys. Fluids 1, 171.zbMATHMathSciNetCrossRefADSGoogle Scholar
  54. Perreault, P. and Akasofu, S.-I.: 1978, 'A Study of Geomagnetic Storms', J. Roy. Astron. Sci. 54, 547.ADSGoogle Scholar
  55. Phillips, J. L., Balogh, A., Bame, S. J., Goldstein, B. E., Gosling, J. T., Hoeksema, J. T., McComas, D. J., Neugebauer, M., Sheeley, N. R. and Yang, Y. M.: 1994, 'Ulysses at 500 South: Constant Immersion in the High-Speed Solar Wind', Geophys. Res. Lett. 21, 1105.CrossRefADSGoogle Scholar
  56. Russell, C. T.: 1972, 'The Configuration of the Magnetosphere', in E. R. Dyer (ed.), Critical Prob. Magnet. Phys., Nat. Acad. Sci., Washington D.C., p. 1.Google Scholar
  57. Russell, C. T. and McPherron, R. L.: 1973, 'Semiannual Variation of Geomagnetic Activity', J. Geophys. Res. 78, 92.CrossRefADSGoogle Scholar
  58. Sheeley, N. R., Jr., Harvey, J. W. and Feldman, W. C.: 1976, 'Coronal Holes, Solar Wind Streams and Recurrent Geomagnetic Disturbances, 1973–1976', Solar Phys. 49, 271.CrossRefADSGoogle Scholar
  59. Smith, E. J. and Sonett, C. P.: 1976, 'The August 1972 Solar Terrestrial Events: Interplanetary Magnetic Field Observations', Space Sci. Rev. 19, 661.CrossRefADSGoogle Scholar
  60. Smith, E. J. and Wolf, J. W.: 1976, 'Observations of Interaction Regions and Corotating Shocks between One and Five AU: Pioneers 10 and 11', Geophys. Res. Lett. 3, 137.ADSGoogle Scholar
  61. Smith, E. J., Balogh, A., Neugebauer, M. and McComas, D.: 1995, 'Ulysses Observations of Alfvén Waves in the Southward Northern Solar Hemisphere', Geophys. Res. Lett. 22, 3381.CrossRefADSGoogle Scholar
  62. Southwood, D. J.: 1974, 'Some Features of Field-Line Resonance in the Magnetosphere', Planetary Space Sci. 22, 483.CrossRefADSGoogle Scholar
  63. Thorne, R.M. and Tsurutani, B. T.: 1991, 'Wave-Particle Interactions in theMagnetopause Boundary Layer', in T. Chang et al. (eds), Physics of Space Plasmas (1990), Sei Publ. Inc., Cambridge,MA, p. 119.Google Scholar
  64. Timothy, A. F., Krieger, A. S. and Vaiana, G. S.: 1975, 'The Structure and Evolution of Coronal Holes', Solar Phys. 42, 135.CrossRefADSGoogle Scholar
  65. Tsurutani, B. T. and Gonzalez, W. D.: 1987, 'The Cause of High Intensity Long-Duration Continuous AE Activity (HILDCAAs): Interplanetary Alfvén Waves Trains', Planetary Space Sci. 35, 405.CrossRefADSGoogle Scholar
  66. Tsurutani, B. T. and Thorne, R. M.: 1982, 'Diffusion Processes in the Magnetopause Boundary Layer', Geophys. Res. Lett. 9, 1247.ADSGoogle Scholar
  67. Tsurutani, B. T. and Gonzalez, W. D.: 1995a, 'The Future of Geomagnetic Storm Predictions: Implications from Recent Solar and Interplanetary Observations', J. Atmospheric Terrest. Phys. 57, 1369.CrossRefADSGoogle Scholar
  68. Tsurutani, B. T. and Gonzalez, W. D.: 1995b, 'The Efficiency of "Viscous Interaction" between the Solar Wind and the Magnetosphere During Intense Northward IMF Events', Geophys. Res. Lett. 22, 663.CrossRefADSGoogle Scholar
  69. Tsurutani, B. T. and Gonzalez, W. D.: 1997, 'The interplanetary Causes of Magnetic Storms: A Review', in B. T. Tsurutani, W. D. Gonzalez and Y. Kamide (eds), Magnetic Storms, Amer. Geophys. Union Press, Washington D.C., Mon. Ser. 98, 1997, p. 77.Google Scholar
  70. Tsurutani, B. T., Russell, C. T., King, J. H., Zwickl, R. J. and Lin, R. P.: 1984, 'A Kinky Heliospheric Current Sheath: Causes of the CDAW6 Substorms', Geophys. Res. Lett. 11, 339.ADSGoogle Scholar
  71. Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I. and Smith, E. J.: 1988a, 'Origin of Interplanetary Southward Magnetic Fields Responsible for Major Magnetic Storms Near Solar Maximum (1978–1979)', J. Geophys. Res. 93, 8519.ADSGoogle Scholar
  72. Tsurutani, B. T., Goldstein, B. E., Gonzalez, W. D. and Tang, F.: 1988b, 'Comment on "A New Method of Forecasting Geomagnetic Activity and Proton Showers", by A. Hewish and P. J. Duffet-Smith', Planetary Space Sci. 36, 205.CrossRefADSGoogle Scholar
  73. Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D. and Sugiura, M.: 1990, 'Interplanetary Alfvén Waves and Auroral Substorm Activity: IMP-8', J. Geophys. Res. 95, 2241.ADSGoogle Scholar
  74. Tsurutani, B. T., Gonzalez, W. D., Tang, F., Lee, Y. T., Okada, M., and Park, D.: 1992, 'Reply to L. J. Lanzerotti: SolarWind Ram Pressure Corrections and an Estimation of the Efficiency of Viscous Interaction', Geophys. Res. Lett. 19, 1993.ADSGoogle Scholar
  75. Tsurutani, B. T., Ho, C. M., Smith, E. J., Neugebauer, M., Goldstein, B. E., Mok, J. S., Arballo, J. K., Balogh, A., Southwood, D. J. and Feldman, W. C.: 1994, 'The Relationship between Interplanetary Discontinuities and Alfvén Waves: Ulysses Observations', Geophys. Res. Lett. 21, 2267.CrossRefADSGoogle Scholar
  76. Tsurutani, B. T., Ho, C.M., Arballo, J. K., Goldstein, B. E. and Balogh, A.: 1995a, 'Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes', Geophys. Res. Lett. 22, 3397.CrossRefADSGoogle Scholar
  77. Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K. and Okada, M.: 1995b, 'Interplanetary original of Geomagnetic Activity in the Declining Phase of the Solar Cycle', J. Geophys. Res. 100, 21717.CrossRefADSGoogle Scholar
  78. Tsurutani, B. T., Goldstein, B. E., Ho, C.M., Neugebauer, M., Smith, E. J., Balogh, A. and Feldman, W. C.: 1996, 'Interplanetary Discontinuities and Alfvén Waves at High Heliographic Latitudes: Ulysses', J. Geophys. Res. 101, 11027.CrossRefADSGoogle Scholar
  79. Tsurutani, B. T., Lakhina, G. S., Ho, C.M., Arballo, J. K., Galvan, G., Boonsiriseth, A., Pickett, J. S., Gumett, D. A., Peterson, W. K. and Thorne, R. M.: 1998, 'Broadband Plasma Waves Observed in the Polar Cap Boundary Layer', J. Geophys. Res. 103, in press.Google Scholar
  80. Tsurutani, B. T., Kamide, Y., Gonzalez, W. D. and Lepping, R. P.: 1999a, 'Interplanetary Causes of Great and Superintense Magnetic Storms', Physics and Chemistry of the Earth, in press.Google Scholar
  81. Tsurutani, B. T., Gonzalez, W. D., Thorne, R. M. and Kamide, Y.: 1999b, 'Comments on "Relation to Solar Activity of Intense Aurorae in Sunlight and Darkness" by T. T. Newell, C.-I. Meng and S. Wing', Nature, submitted.Google Scholar
  82. Vandas, M., Fischer, S., Pclant, P. and Geranios, A.: 1993, 'Spheroidal Models of Magnetic Clouds and Their Comparison with Spacecraft Measurement', J. Geophys. Res. 98, 11467.ADSGoogle Scholar
  83. Vandas, M., Fischer, S., Dryer, M., Smith, Z. and Detman, T.: 1998, 'Propagation of a Spheromak 2. Three-Dimensional Structure of a Spheromak', J. Geophys. Res. 103, 23717.CrossRefADSGoogle Scholar
  84. Weiss, L. A., Reiff, P. H., Moses, J. J. and Moore, B. D.: 1992, Energy Dissipation in Substorms, ESA SP-335, p. 309.Google Scholar
  85. Winterhalter, D., Smith, E. J., Burton, M. E., Murphy, N. and McComas, D. J.: 1994, 'The Heliospheric Plasma Sheet', J. Geophys. Res. 99, 6667.CrossRefADSGoogle Scholar
  86. Zwan, B. J. and Wolf, R. A.: 1976, 'Depletion of the SolarWind Plasma Near a Planetary Boundary', J. Geophys. Res. 81, 1636.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Walter D. Gonzalez
    • 1
  • Bruce T. Tsurutani
    • 2
  • Alicia L. Clúa de Gonzalez
    • 1
  1. 1.Instituto Nacional Pesquisas EspaciaisSão José dos CamposSão PauloBrazil
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A

Personalised recommendations