Advertisement

Journal of Biological Physics

, Volume 25, Issue 1, pp 41–63 | Cite as

Models for Energy and Charge Transport and Storage in Biomolecules

  • S.F. Mingaleev
  • P.L. Christiansen
  • Yu.B. Gaididei
  • M. Johansson
  • K.Ø. Rasmussen
Article

Abstract

Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrödinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.

Bistability Long-range dispersion Bound state Anharmonic Nonlocal Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reiss, C.: In M. Peyrard (ed.), Nonlinear Excitations in Biomolecules, Springer-Verlag, Berlin, Heidelberg, Les Editions de Physique Les Ulis, 1995, p. 29.Google Scholar
  2. 2.
    Lozansky et al.: In R.H. Sarma (ed.), Stereodynamics of Molecular Systems, Pergamon Press, 1979, p. 265.Google Scholar
  3. 3.
    Chou, K.C. and Mao, B.: Biopolymers 27 (1988), 1795.Google Scholar
  4. 4.
    Prohovsky, E.W.: In R.H. Sarma and M.H. Sarma (eds.), Biomolecular Stereodynamics IV, Adenine Guilderland, New York, 1986, p. 21.Google Scholar
  5. 5.
    Georghiou et al.: Biophysical J. 70 (1996), 1909.Google Scholar
  6. 6.
    Holbrook, S.R. and Kim, S.H.: J. Mol. Biol. 173 (1984), 361.Google Scholar
  7. 7.
    Gaididei, Yu.B. and Serikov, A.A.: Theor. and Math. Phys. 27 (1976), 457.Google Scholar
  8. 8.
    Papanicolaou, G.C.: J. Appl. Math. 21 (1971), 13.Google Scholar
  9. 9.
    Wadati, M.: J. Phys. Soc. Jpn. 38 (1976), 673.Google Scholar
  10. 10.
    Sievers, A.J. and Takeno, S.: Phys. Rev. Lett. 61 (1988), 970.Google Scholar
  11. 11.
    MacKay, R.S. and Aubry, S.: Nonlinearity 7 (1994), 1623.Google Scholar
  12. 12.
    Pouget, J. et al.: Phys. Rev. B 47 (1993), 14866.Google Scholar
  13. 13.
    Dauxois, T. and Peyrard, M.: Phys. Rev. Lett. 70 (1993), 3935.Google Scholar
  14. 14.
    Muto, V. et al.: Phys. Rev. A 42 (1990), 7452.Google Scholar
  15. 15.
    Christiansen, P.L. et al.: Phys. Rev. B 55 (1997), 5759.Google Scholar
  16. 16.
    Gaeta, G. et al.: Riv. N. Chim. 17(4) (1994), 1.Google Scholar
  17. 17.
    Peyrard, M. and Bishop, A.: Phys. Rev. Lett. 62 (1989), 2755.Google Scholar
  18. 18.
    Techera, M. et al.: Phys. Rev. A 40 (1989), 6636.Google Scholar
  19. 19.
    Dauxois, T. et al.: Phys. Rev. E 47 (1993), 684.Google Scholar
  20. 20.
    Dauxois, T. et al.: Phys. Rev. E 47 (1993), R44.Google Scholar
  21. 21.
    Dahlborg, U. and Rupprecht, A.: Biopolymers 10 (1971), 849.Google Scholar
  22. 22.
    Corongiu, G. and Clementi, E.: Biopolymers 20 (1981), 551.Google Scholar
  23. 23.
    Braun, O.M. et al.: Phys. Rev. B 41 (1990), 7118.Google Scholar
  24. 24.
    Woafo, P. et al.: J. Phys. Condens. Matter 5 (1993), L123.Google Scholar
  25. 25.
    Vazquez, L. et al.: Phys. Lett. A 189 (1994), 454.Google Scholar
  26. 26.
    Alfimov, G.L. et al.: Chaos 3 (1993), 405.Google Scholar
  27. 27.
    Gaididei, Yu.B. et al.: Phys. Lett. A 222 (1996), 152; Gaididei, Yu.B. et al.: Phys. Scr. T67 (1996), 151.Google Scholar
  28. 28.
    Gaididei, Yu.B. et al.: Phys. Rev. Lett. 75 (1995), 2240.Google Scholar
  29. 29.
    Gaididei, Yu.B. et al.: Phys. Rev. E 55 (1997), 6141.Google Scholar
  30. 30.
    Davydov, A.S.: Solitons in molecular systems, D. Reidel Pub. Co., Dordrecht, Boston, Lancaster, 1987.Google Scholar
  31. 31.
    Christiansen, P.L. and Scott, A.C. (eds.), Davydov's soliton reivisited, NATO ASI Series B: Physics Vol. 243, Plenum Press, 1990.Google Scholar
  32. 32.
    Christiansen, P.L. et al.: Chaos, Solitons and Fractals 2 (1992), 45.Google Scholar
  33. 33.
    Davydov, A.S. and Zolotariuk, A.V.: Phys. Stat. Sol. (b) 115 (1983), 115.Google Scholar
  34. 34.
    Davydov, A.S. and Zolotariuk, A.V.: Phys. Scr. 30 (1984), 426.Google Scholar
  35. 35.
    Christiansen, P.L. et al.: Phys. Lett. A 166 (1992), 129.Google Scholar
  36. 36.
    Gaididei, Yu.B. et al.: Phys. Scr. 51 (1995), 289.Google Scholar
  37. 37.
    Zolotaryuk, A.V. et al.: Europhys. Lett. 31 (1995), 531.Google Scholar
  38. 38.
    Zolotaryuk, A.V. et al.: Phys. Rev. B 54 (1996), 266.Google Scholar
  39. 39.
    Mingaleev, S.F.: Effects of nonlocality and anharmonicity in nonlinear transport of energy and charge, Ph.D. thesis (in Russian), 1997.Google Scholar
  40. 40.
    Pérez, P. and Theodorakopoulos, N.: Phys. Lett. A 124 (1987), 267.Google Scholar
  41. 41.
    Hénon, M. and Heiles, C.: Astrophysics 63 (1964), 73.Google Scholar
  42. 42.
    Baker, G.A. Jr.: Phys. Rev. 122 (1961), 1477.Google Scholar
  43. 43.
    Kac, A.M. and Helfand, B.C.: J. Math. Phys. 4 (1972), 1078.Google Scholar
  44. 44.
    Johansson, M. et al.: Phys. Rev. E 57 (1998), 4739.Google Scholar
  45. 45.
    Laedke, E.W. et al.: Phys. Rev. Lett. 73 (1994), 1055.Google Scholar
  46. 46.
    Malomed, B. and Weinstein, M.I.: Phys. Lett. A 220 (1996), 91.Google Scholar
  47. 47.
    Johansson, M. et al.: Physica D 119 (1998), 115.Google Scholar
  48. 48.
    Lichtenberg, A.J. and Lieberman, M.A.: Regular and stochastic motion, Springer-Verlag, Berlin, Heidelberg, New York, 1983.Google Scholar
  49. 49.
    Lamb, G.L. Jr.: Elements of soliton theory, John Wiley and Sons, New York, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S.F. Mingaleev
    • 1
  • P.L. Christiansen
    • 2
  • Yu.B. Gaididei
    • 1
  • M. Johansson
    • 3
  • K.Ø. Rasmussen
    • 4
  1. 1.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  2. 2.Department of Mathematical ModellingThe Technical University of DenmarkLyngbyDenmark
  3. 3.Department of Physics and Measurement TechnologyLinköping UniversityLinköpingSweden
  4. 4.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A

Personalised recommendations