Studia Logica

, Volume 62, Issue 3, pp 353–370 | Cite as

Conservative Theories of Classical Truth

  • Volker Halbach
Article

Abstract

Some axiomatic theories of truth and related subsystems of second-order arithmetic are surveyed and shown to be conservative over their respective base theory. In particular, it is shown by purely finitistically means that the theory PA ÷ "there is a satisfaction class" and the theory FS↾ of [2] are conservative over PA.

truth satisfaction class cut elimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dragalin, A., ‘Correctness of inconsistent theories with notions of feasibility’, inComputation theory. Fifth Symposium, Zaborów Poland, December 1984 Proceedings, Lecture Notes in Computer Science 208, pages 58–79, Springer, 1985.Google Scholar
  2. [2]
    Halbach, V., ‘A system of complete and consistent truth’,Notre Dame Journal of Formal Logic 35: 311–327, 1994.Google Scholar
  3. [3]
    Halbach, V.,Axiomatische Wahrheitstheorien, Akademie Verlag, Berlin, 1996.Google Scholar
  4. [4]
    Kaye, R.,Models of Peano Arithmetic, Oxford Logic Guides, Oxford University Press, 1991.Google Scholar
  5. [5]
    Kotlarski, H., ‘Full satisfaction classes: a survey’,Notre Dame Journal of Formal Logic 32: 573–579, 1991.Google Scholar
  6. [6]
    Kotlarski, H.,S. Krajewski, andA. Lachlan, ‘Construction of satisfaction classes for nonstandard models’,Canadian Mathematical Bulletin 24: 283–293, 1981.Google Scholar
  7. [7]
    Krajewski, S., ‘Nonstandard satisfaction classes’, inSet Theory and Hierarchy Theory, pages 121–145, Lecture notes in mathematics, Springer, 1976.Google Scholar
  8. [8]
    Lachlan, A., ‘Full satisfaction classes and recursive saturation’,Canadian Mathematical Bulletin 24: 295–297, 1981.Google Scholar
  9. [9]
    McGee, V.,Truth, Vagueness and Paradox, Hackett Publishing, Indianapolis, 1991.Google Scholar
  10. [10]
    Mostowski, A., ‘Some impredicative definitions in the axiomatic set-theory’,Fundamenta Mathematicae 37: 111–124, 1950.Google Scholar
  11. [11]
    Smith, S.,Non-standard Syntax and Semantics and Full Satisfaction Classes, PhD thesis, Yale University, New Haven, Connecticut, 1984.Google Scholar
  12. [12]
    Takeuti, G.,Proof Theory, North Holland, Amsterdam, second edition, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Volker Halbach
    • 1
    • 2
  1. 1.Department of PhilosophyUniversity of Notre DameNotre DameU.S.A.
  2. 2.Universität Konstanz Fachgruppe PhilosophieKonstanzGermany

Personalised recommendations