Advertisement

Journal of Solution Chemistry

, Volume 29, Issue 7, pp 605–618 | Cite as

Solid-Solute Phase Equilibria in Aqueous Solution. XII. Solubility and Thermal Decomposition of Smithsonite

  • Wolfgang Preis
  • Erich Königsberger
  • Heinz Gamsjäger
Article

Abstract

The solubility constant of ZnCO3, smithsonite, in aqueous NaClO4 solutions hasbeen investigated as a function of temperature (288.15 ≤ T/K ≤ 338.15) atconstant ionic strength I = 1.00 mol-kg−1. In addition, the solubility of zinccarbonate has been determined at 2.00 and 3.00 mol-kg−1 NaClO4 (298.15 K).The solubility measurements have been evaluated by applying the Daviesapproximation, the specific ion-interaction theory, and the Pitzer model, respectively.The thermodynamic interpretation leads to an internally consistent set ofthermodynamic data for ZnCO3 (298.15 K): solubility constant log*K p50 0 = 7.25 ± 0.10,standard Gibbs energy of formation Δi Gθ (ZnCO3) = (−777.3±0.6)kJ-mol−1, standard enthalphy of formation Δf Hθ (ZnCO3)= (−820.2±3.0) kJ-mol−1,and standard entropy Sθ (ZnCO3) = (77±10)J-mol−1 K.−1. Furthermore, the DSCcurve for the thermal decarbonation of zinc carbonate has been recorded in orderto obtain the enthalpy of formation ΔfHθ (ZnCO3) =(−820.2±2.0) from theheat of decomposition. Finally, our results are also consistent within theexperimental error limits with a recent determination of the standard entropy ofsmithsonite, leading to a recommended set of thermodynamic properties of ZnCO3:\(\begin{gathered} \Delta _f G^\Theta ({\text{ZnCO}}_{\text{3}} ) = ( - 737.3 \pm 0.6){\text{kJ - mol}}^{{\text{ - 1}}} \hfill \\ \Delta _f H^\Theta ({\text{ZnCO}}_{\text{3}} ) = ( - 818.9 \pm 0.6){\text{kJ - mol}}^{{\text{ - 1}}} \hfill \\ {\text{ }}S^\Theta ({\text{ZnCO}}_{\text{3}} ) = (81.2 \pm 0.2){\text{J - mol}}^{{\text{ - 1}}} - {\text{K}}^{{\text{ - 1}}} \hfill \\ \end{gathered} \)

Solubility temperature dependence carbonate zinc smithsonite Pitzer model Davies approximation specific ion-interaction theory thermalanalysis; DSC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Gamsjäger, W. Preis, E. Königsberger, M. Clara Magalhães, and P. Brandão, J. Solution Chem. 28, 711 (1999).Google Scholar
  2. 2.
    W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd edn. (Wiley, New York, 1996).Google Scholar
  3. 3.
    R. Grauer, in Modelling in Aquatic Chemistry, I. Grenthe and I. Puigdomenech, eds. (OECD NEA, Paris, 1997), pp. 131–152.Google Scholar
  4. 4.
    R. Grauer and W. Feitknecht, Corros. Sci. 7, 629 (1967).Google Scholar
  5. 5.
    K. K. Kelley and C T. Anderson, in Bulletin 384: Contributions to the Data on Theoretical Metallurgy IV (U. S. Department of the Interior, Bureau of Mines, 1935).Google Scholar
  6. 6.
    O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, 2nd edn. (Springer-Verlag, Berlin, 1991).Google Scholar
  7. 7.
    R. A. Robie and B. S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10 5 Pascals) Pressure and at Higher Temperatures (U.S. Geological Survey Bulletin 2131, Washington, 1995).Google Scholar
  8. 8.
    W. A. Roth and P. Chall, Z. Elektrochem. 34, 185 (1928).Google Scholar
  9. 9.
    C. T. Anderson, J. Amer. Chem. Soc. 56, 849 (1934).Google Scholar
  10. 10.
    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and L. Nuttall, J. Phys. Chem. Ref. Data Suppl. 11, 2 (1982).Google Scholar
  11. 11.
    R. A. Robie, H. T. Haselton, and B. S. Hemingway, J. Chem. Thermodyn. 21, 743 (1989).Google Scholar
  12. 12.
    H. T. Haselton and J. R. Goldsmith, Geochim. Cosmochim. Acta 51, 261 (1987).Google Scholar
  13. 13.
    P. Schindler, Chimia 17, 313 (1963).Google Scholar
  14. 14.
    H. Gamsjäger, H. Stuber, and P. Schindler, Helv. Chim. Acta 48, 723 (1965).Google Scholar
  15. 15.
    H. L. Clever, M. E. Derrick, and S. A. Johnson, J. Phys. Chem. Ref. Data 21, 941 (1992).Google Scholar
  16. 16.
    R. Grauer, Bereinigte Lo¨slichkeitsprodukte von M(II)-Schwermetallcarbonaten (Paul Scherrer Institut, Internal Technical Report, TM-44-94-05, 1994).Google Scholar
  17. 17.
    H. J. Smith, J. Amer. Chem. Soc. 40, 883 (1918).Google Scholar
  18. 18.
    P. Schindler, M. Reinert, and H. Gamsjäger, Helv. Chim. Acta 52, 2327 (1969).Google Scholar
  19. 19.
    J. M. Zachara, J. A. Kittrick, L. S. Dake, and J. B. Harsh, Geochim. Cosmochim. Acta 53, 9 (1989).Google Scholar
  20. 20.
    F. Reiterer, Löslichkeitskonstanten und Freie Bildungsenthalpien neutraler Ñbergangsmetallcarbonate Ph.D. thesis (Montanuniversität, Leoben, Austria, 1980).Google Scholar
  21. 21.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Butterworths, London, 1959).Google Scholar
  22. 22.
    A. M. Nguyen, E. Königsberger, H. Marhold, and H. Gamsjäger, Monatsh. Chem. 124, 1011 (1993).Google Scholar
  23. 23.
    H. Gamsjäger, H. Marhold, E. Königsberger, Y. J. Tsai, and H. Kolmer, Z. Naturforsch. 50A, 59 (1995).Google Scholar
  24. 24.
    C. W. Davies, Ion Association (Butterworths, London, 1962).Google Scholar
  25. 25.
    J. N. Brønsted, J. Amer. Chem. Soc. 44, 877 (1922).Google Scholar
  26. 26.
    J. N. Brønsted, J Amer. Chem. Soc. 44, 938 (1922).Google Scholar
  27. 27.
    E. A. Guggenheim, Phil. Mag. 19, 588 (1935).Google Scholar
  28. 28.
    G. Scatchard, Chem. Rev. 19, 309 (1936).Google Scholar
  29. 29.
    I. Grenthe, A. V. Plyasunov, and K. Spahiu, in Modelling in Aquatic Chemistry, I. Grenthe and I. Puigdomenech, eds. (OECD NEA, Paris, 1997), p. 325.Google Scholar
  30. 30.
    P. Schindler, H. Althaus, and W. Feitknecht, Helv. Chim. Acta 47, 982 (1964).Google Scholar
  31. 31.
    J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, Washington, 1989).Google Scholar
  32. 32.
    K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, 2nd edn., K. S. Pitzer, ed. (CRC Press, Boca Raton, FL, 1991), pp. 76–153.Google Scholar
  33. 33.
    E. Königsberger, L.-C. Königsberger, and H. Gamsjäger, Geochim. Cosmochim. Acta 63, 3105 (1999).Google Scholar
  34. 34.
    E. Königsberger and G. Eriksson, CALPHAD 19, 207 (1995).Google Scholar
  35. 35.
    I. Puigdomenech, J. A. Rard, A. V. Plyasunov, and I. Grenthe, in Modelling in Aquatic Chemistry, I. Grenthe and I. Puigdomenech, eds. (OECD NEA, Paris, 1997) pp. 427–493.Google Scholar
  36. 36.
    J. E. Bauman, Jr., U.S. Bur. Mines Inf. Circ. No. 8852, 268 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Wolfgang Preis
  • Erich Königsberger
  • Heinz Gamsjäger

There are no affiliations available

Personalised recommendations