Space Science Reviews

, Volume 87, Issue 1–2, pp 1–24 | Cite as

Solar Wind Models from the Sun to 1 AU: Constraints by in Situ and Remote Sensing Measurements

  • E. Marsch


There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified.

solar corona and wind boundary conditions radial profiles kinetic and multifluid characteristics future research topics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alazraki, G., and Couturier, P.: 1971, Solar wind acceleration caused by the gradient of Alfvén wave pressure, Astron. Astrophys., 13, 380.ADSGoogle Scholar
  2. Axford, W. I., and McKenzie, J. F.: 1992, The origin of high speed solar wind streams, in Solar Wind Seven, ed. E. Marsch and R. Schwenn, (Pergamon Press: Oxford, England), pp. 1–4.Google Scholar
  3. Axford, W. I., and McKenzie, J. F.: 1997, The solar wind, in Cosmic Winds and the Heliosphere,ed. J. R. Jokipii, C. P. Sonett, and M. S. Giampapa, (University of Arizona Press: Tucson, USA), pp. 31–66.Google Scholar
  4. Banaszkiewicz, M., Axford, W. I., and McKenzie, J. F.: 1998, An analytic solar magnetic field model, Astron. Astrophys., 337, 940–944.ADSGoogle Scholar
  5. Barnes, A., Gazis, P. R., and Phillips, J. L.: 1995, Constraints on solar wind acceleration mechanisms from Ulysses plasma observations: The first polar pass, Geophys. Res. Lett., 22, 3309–3311.CrossRefADSGoogle Scholar
  6. Belcher, J.: 1971, Alfvénic wave pressure and the solar wind, (Astrophys. J., 168, 509.ADSGoogle Scholar
  7. Bertaux, J.-L., Quemerais, E., and Lallement, R.: 1996, Observations of a sky Lyman _ groove related to enhanced solar wind mass flux in the neutral sheet, Geophys. Res. Lett., 23, 3675–3678.CrossRefADSGoogle Scholar
  8. Bravo, S., Stewart, G. A., and Blanco-Cano, X.: 1998, The varying multipolar structure of the Sun's magnetic field and the evolution of the solar magnetosphere through the solar cycle, Solar Phys., 179, 223–235.CrossRefADSGoogle Scholar
  9. Brekke, P., Hassler, D. M., and Wilhelm, K.: 1997, Doppler shifts in the quiet-Sun transition region and corona observed with SUMER on SOHO, Solar Phys., 175, 349–374.CrossRefADSGoogle Scholar
  10. Chae, J., Yun, H. S., and Poland, A. I.: 1998, Temperature dependence of UV line average Doppler shifts in the quiet Sun, Astrophys. J. Supp., 114, 151.CrossRefADSGoogle Scholar
  11. Corti, G., Poletto, G., Romoli, M., Michels, J., Kohl, J., and Noci, G.: 1997, Physical parameters in plume and interplume regions from UVCS observations, in Proceedings of the Fifth SOHO Workshop,ESA-SP-404, pp. 289–294.ADSGoogle Scholar
  12. Cranmer, S. R., Kohl, J. L., Noci, G., et al.:1999, An empirical model of a polar coronal hole at solar minimum, Astrophys. J., 511, 481.Google Scholar
  13. David, C., Gabriel, A. H., Bely-Dubau, F., Fludra, A., Lemaire, P., and Wilhelm, K.: 1998, Measurement of the electron temperature gradient in solar coronal holes, Astron. Astrophys., 336, L90.ADSGoogle Scholar
  14. Dusenbery, P. B., and Hollweg, J. V.: 1981, Ion-cyclotron heating and acceleration of solar wind minor ions, J. Geophys. Res., 86, 153–164.ADSGoogle Scholar
  15. Esser, R., Habbal, S. R., Coles, W. A., and Hollweg, J. V.: 1997, Hot protons in the inner corona and their effect on the flow properties of the solar wind, J. Geophys. Res., 102, 7063–7074.CrossRefADSGoogle Scholar
  16. Feldman, W. C., Asbridge, J. R., Bame, S. J., Gary, S. P., and Montgomery, M. D.: 1976a, Electron parameter correlations in high-speed streams and heat flux instabilities, J. Geophys. Res., 81, 2377–2382.ADSGoogle Scholar
  17. Feldman, W. C., Asbridge, J. R., Bame, S. J., Gary, S. P., Montgomery, M. D., and Zink, S. M.: 1976b, Evidence for the regulation of solar wind heat flux at 1 AU, J. Geophys. Res., 81, 5207–5211.ADSGoogle Scholar
  18. Fisher, R., and Guhathakurta, M.: 1995, Physical properties of polar coronal rays and holes as observed with the Spartan 201–01 coronagraph, Astrophys. J., 447, L139–L142.ADSGoogle Scholar
  19. Geiss, J., Gloeckler, G., and von Steiger, R.: 1995, Origin of the solar wind from composition data, Space Science Reviews, 72, 49–60.CrossRefADSGoogle Scholar
  20. Grall, R. R., Coles, W. A., Klinglesmith, M. T., Breen, A. R., Williams, P. J. S., Markkanen, J., and Esser, R.: 1996, Rapid acceleration of the polar solar wind, Letters of Nature, 379, 429–432.CrossRefADSGoogle Scholar
  21. Habbal, S. R., Woo, R., Fineschi, S., O'Neal, R., Kohl, J., Noci, G., and Korendyke, C.: 1997, Origins of the slow and the ubiquitous fast solar wind, Astrophys. J., 489, L103.ADSGoogle Scholar
  22. Hammer, R.: 1982a, Energy balance of stellar corona: I. Methods and examples, Astrophys. J., 259, 767–778.ADSGoogle Scholar
  23. Hammer, R.: 1982b, Energy balance of stellar corona: II. Effect of coronal heating, Astrophys. J., 259, 779–791.ADSGoogle Scholar
  24. Hansteen, V., and Leer, E.: 1995, Coronal heating, densities, and temperatures and solar wind acceleration, Journal of Geophys. Res., 100, 21577–21593.CrossRefADSGoogle Scholar
  25. Hansteen, V., Leer, E., and Holzer, T.: 1997, The role of helium in the outer solar atmosphere, Astrophys. J., 482, 498.ADSGoogle Scholar
  26. Hassler, D. M., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason, H. E., Vial, J.-C., and Wilhelm, K.: 1999, Solar coronal hole outflow velocities and the chromospheric network, Science, 283, 5040, 810–813.CrossRefADSGoogle Scholar
  27. Hartle, R. E., and Sturrock, P. A.: 1968, Two-fluid model of the solar wind, Astrophys. J., 151, 1155–1170.ADSGoogle Scholar
  28. Hefti, S., Gr¨unwaldt, H., Ipavich, F. M., et al.:1998, Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS, J. Geophys. Res.,in press.Google Scholar
  29. Hoeksema, J. T.: 1995, The large-scale structure of the heliospheric current sheet during the Ulysses epoch, Space Science Reviews, 72, 137–148.CrossRefADSGoogle Scholar
  30. Hollweg, J. V.: 1978, Some physical processes in the solar wind, Rev. Geophys. Space Phys., 16, 689–720.ADSGoogle Scholar
  31. Hollweg, J. V.: 1986, Transition region, corona, and solar wind in coronal holes, J. Geophys. Res., 91, 4111–4125.ADSGoogle Scholar
  32. Hollweg, J. V., and Turner, J. M.: 1978, Acceleration of solar wind He++, 3, Effects of resonant and nonresonant intercations with transverse waves, J. Geophys. Res., 83, 97–113.ADSGoogle Scholar
  33. Hollweg, J. V., and Johnson, W.: 1986, Transition region, corona, and solar wind in coronal holes: Some two-fluid models, J. Geophys. Res., 93, 9547–9554.ADSGoogle Scholar
  34. Holzer, T. E., and Axford, W. I.: 1970, The theory of stellar winds and related flows, Ann. Rev. Astron. Astrophys., 8, 31–61.CrossRefADSGoogle Scholar
  35. Hu, Y. Q., Esser, R., and Habbal, S. R.: 1997, A fast solar wind model with anisotropic proton temperature, J. Geophys. Res., 102, 14661–14676.CrossRefADSGoogle Scholar
  36. Isenberg, P. A., and Hollweg, J. V.: 1983, On the preferential acceleration and heating of solar wind heavy ions, J. Geophys. Res., 88, 3923–3935.ADSGoogle Scholar
  37. Isenberg, P. A.: 1990, Investigations of a turbulence driven wave model, J. Geophys. Res., 95, 6437.ADSGoogle Scholar
  38. Jacques, S. A.: 1978, Solar wind models with Alfvén waves, Astrophys. J., 226, 632–649.ADSGoogle Scholar
  39. Ko, Y.-K., Fisk, L., Geiss, J., Gloeckler, G., and Guhathakurta, M.: 1997, An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole, Solar Phys., 171, 345–361.CrossRefADSGoogle Scholar
  40. Kohl, J. L., Noci, G., Anonucci, E., Tondello, G., Huber, M. C. E., Gardner, L. D., Nicolosi, P., Strachan, L., Fineschi, S., Raymond, J. C., Romoli, M., Spadaro, D., Panasyuk, A., Siegmund, O. H. W., Benna, C., Ciaravella, A., Cranmer, S. R., Giordano, S., Karovska, M., Martin, R., Michels, J., Modigliani, A., Naletto, G., Pernechele, C., Poletto, G., and Smith, P. L.: 1997, First results from the SOHO Ultraviolet Coronagraph Spectrometer, Solar Phys., 175, 613–644.CrossRefADSGoogle Scholar
  41. Kopp, R. A., and Holzer, T. E.: 1976, Dynamics of coronal hole regions, I. Steady polytropic flows with multiple critical points, Solar Phys., 49, 43–56.CrossRefADSGoogle Scholar
  42. Leer, E., and Axford, W. I.: 1972, A two fluid model with anisotropic proton temperature, Solar Phys., 23, 238–250.CrossRefADSGoogle Scholar
  43. Leer, E., Holzer, T. E., and Fl°a, T.: 1982, Acceleration of the solar wind, Space Sci. Rev., 33, 161–200.CrossRefADSGoogle Scholar
  44. Lemaire, P., Wilhelm, K., Curdt, W., Sch¨uhle, U., Marsch, E., Poland, A. I., Jordan, S. D., Thomas, R. J., Hassler, D. M., Vial, J. C., K¨uhne, M., Huber, M. C. E., Siegmund, O. H. W., Gabriel, A., Timothy, J. G., and Grewing, M.: 1997, First results of the SUMER telescope and spectrometer on SOHO, II. Imagery and data management, Solar Phys., 170, 105–122.CrossRefADSGoogle Scholar
  45. Li, X., Esser, R., and Habbal, S. R.: 1997, Influence of heavy ions on the high-speed solar wind, J. Geophys. Res., 102, 17419–17432.CrossRefADSGoogle Scholar
  46. Lie-Svendsen, O., Hansteen, V. H., and Leer, E.: 1997, Kinetic electrons in high-speed solar wind streams: Formation of high-energy tails, J. Geophys. Res., 102, 4701–4718.CrossRefADSGoogle Scholar
  47. Mariska, J. T.: 1992, The Solar Transition Region(Cambridge Astrophysics Series 23, Cambridge, University Press).Google Scholar
  48. Marsch, E., Goertz, C. K., and Richter, K.: 1982, Wave heating and acceleration of solar wind ions by cyclotron resonance, J. Geophys. Res., 87, 5030–5044.ADSGoogle Scholar
  49. Marsch, E., and Richter, A. K.: 1984, Helios observational constraints on solar wind expansion, J. Geophys. Res., 89, 6599–6612.ADSGoogle Scholar
  50. Marsch, E.: 1991a, Kinetic physics of the solar wind plasma, in Physics of the Inner Heliosphere, Vol. II, eds. R. Schwenn and E. Marsch, (Springer-Verlag: Heidelberg), pp. 45- 133.Google Scholar
  51. Marsch, E.: 1991b, MHD Turbulence in the Solar Wind, in Physics of the Inner Heliosphere,Vol. II, eds. R. Schwenn and E. Marsch, (Springer Verlag: Heidelberg), pp. 159–241.Google Scholar
  52. Marsch, E.: 1992, On the possible role of plasma waves in the heating of chromosphere and corona, in Solar Wind Seven, ed. E. Marsch and R. Schwenn, (Pergamon Press: Oxford, England), pp. 65–68.Google Scholar
  53. Marsch, E., and Tu, C.-Y.: 1997a, Solarwind and chromospheric network, Solar Physics, 176, 87–106.CrossRefADSGoogle Scholar
  54. Marsch, E., and Tu, C.-Y.: 1997b, The effects of high-frequency Alfvén waves on coronal heating and solar wind acceleration, Astron. Astrophys., 319, L17–L20.ADSGoogle Scholar
  55. Marsden, R. G.: 1995, The High Latitude Heliosphere,(vol. 72 of Space Science Reviews, Kluwer Academic Publishers, Dordrecht, The Netherlands).Google Scholar
  56. Maksimovic, M., Pierrard, V., and Lemaire, J. F.: 1997, A kinetic model of the solar wind with Kappa distribution functions in the corona, Astron. Astrophys., 324, 725–734.ADSGoogle Scholar
  57. McComas, D. J., Bame, S. J., Feldman, W. C., Gosling, J. T., and Phillips, J. L.: 1992, Solar wind halo electrons from 1- 4 AU, Geophys. Res. Lett., 19, 1291–1294.ADSGoogle Scholar
  58. McKenzie, J. F., Banaszkiewicz, M., and Axford, W. I.: 1995, Acceleration of the high speed solar wind, Astron. Astrophys., 303, L45–L48.ADSGoogle Scholar
  59. McKenzie, J. F., Axford, W. I., and Banaszkiewicz, M.: 1997, The fast solar wind, Geophys. Res. Lett., 24, 2877–2880.CrossRefADSGoogle Scholar
  60. Neugebauer, M.: 1981, Observations of solar wind helium, Fundam. Cosmic Phys., 7, 131–199.ADSGoogle Scholar
  61. Neugebauer, M., Goldstein, B. E., Bame, S. J, and Feldman, W. C.: 1994, Ulysses near-ecliptic observations of differential flow between protons and alphas in the solar wind, J. Geophys. Res., 99, 2505–2511.CrossRefADSGoogle Scholar
  62. Neugebauer, M., Goldstein, B. E., Bame, S. J, and Feldman, W. C.: 1996, Ulysses observations of differential alpha-proton streaming in the solar wind, J. Geophys. Res., 101, 17047–17055.CrossRefADSGoogle Scholar
  63. Olsen, E. L., and Leer, E.: 1996, Thermally-driven one-fluid electron-proton solar wind; 8-moment approximation, Astrophys. J., 462, 982–996.ADSGoogle Scholar
  64. Parker, E. N.: 1958, Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664–684.ADSCrossRefGoogle Scholar
  65. Peter, H., and Marsch, E.: 1997, Ionization layer of hydrogen in the solar chromosphere and the solar wind mass flux, in Proceedings of the Fifth SOHO Workshop,ESA-SP-404, pp. 591–594.ADSGoogle Scholar
  66. Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., M¨uhlh¨auser, K.-H., Rosenbauer, H., and Schwenn, R.: 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment, J. Geophys. Res., 92, 1075–1092.ADSGoogle Scholar
  67. Phillips, J. L., Feldman, W. C., Gosling, J. T., and Scime, E. E.: 1995, Solar wind plasma electron parameters based on aligned observations by ICE and Ulysses, Adv. Space Res., 16 (9), 95- 100.Google Scholar
  68. Riley, P., Sonett, C. P., Balogh, A., Forsyth, R. J., Scime, E. E., and Feldman, W. C.: 1995, Alfvénic fluctuations in the solar wind: A case study using Ulysses measurements, Space Sci. Rev., 72, 197–200.CrossRefADSGoogle Scholar
  69. Schwenn, R.: 1990, Large scale structure of the interplanetary medium, in Physics of the Inner Heliosphere,Vol. 1, ed. R. Schwenn and E. Marsch, (Springer Verlag: Berlin, Heidelberg, New York), pp. 99- 181.Google Scholar
  70. Schwenn, R., Inhester, B., Plunkett, S. P., Epple, A., Podlipnik, B., Bedford, D. K., Bout, M. V., Brueckner, G. E., Dere, K. P., Eyles, C. J., Howard, R. A., Koomen, M. J., Korendyke, C. M., Lamy, P. L., Llebaria, A., Michels, D. J., Moses, J. D., Moulton, N. E., Paswaters, S. E., Simnett, G. M., Socker, D. G., St. Cyr, O. C., Tappin, S. J., and Wang, D.: 1997, First view of the extended green line emission corona at solar activity minimum using the LASCO-C1 coronagraph on SOHO, Solar Phys., 175, 667–684.CrossRefADSGoogle Scholar
  71. Scime, E. E., Bame, S. J., Feldman, W. C., Gary, S. P., and Phillips, J. L.: 1994, Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations, J. Geophys. Res., 99, 23401–23410.CrossRefADSGoogle Scholar
  72. Scudder, J. D., and Olbert, S.: 1979a, A theory of local and global processes which affect solar wind electrons, 1. The origin of typical 1 AU velocity distribution functions - Steady state theory, J. Geophys. Res., 84, 2755–2772.ADSGoogle Scholar
  73. Scudder, J. D., and Olbert, S.: 1979b, A theory of local and global processes which affect solar wind electrons, 2. Experimental support, J. Geophys. Res., 84, 6603–6620.ADSGoogle Scholar
  74. Seely, J. F., Feldman, U., Sch¨uhle, U., Wilhelm, K., Curdt, W., and Lemaire, P.: 1997, Turbulent velocities and ion temperatures in the solar corona obtained from SUMER line widths, Astrophys. J., 484, L87–L90.CrossRefADSGoogle Scholar
  75. Sheeley, N. R., Jr., Wang, Y.-M., Hawley, S. H., Brueckner, G. E., Dere, K. P., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Paswaters, S. E., Socker, D. G., St. Cyr, O. C., Wang, D., Lamy, P. L., Llebaria, A., Schwenn, R., Simnett, G. M., Plunkett, S., and Biesecker, D. A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R_, Astrophys. J., 484, 472–478.Google Scholar
  76. Smith, E. J., Neugebauer, M., Balogh, A., Bame, S. J., Lepping, R. P., and Tsurutani, B. T.: 1995, Ulysses observations of latitude gradients in the heliospheric magnetic field: Radial component and variances, Space Science Reviews, 72, 165–170.CrossRefADSGoogle Scholar
  77. Thieme, K. M., Marsch, E., and Schwenn, R.: 1990, Spatial structures in high-speed streams as signatures of fine structures in coronal holes, Annales Geophysicae, 8 (11), 713–724.Google Scholar
  78. Tsurutani, B. T., Ho, C. M., Arballo, J. K., Lakhina, G. S., Glassmeier, K.-H., and Neubauer, F. M.: 1997, Nonlinear electromagnetic waves and spherical arc-polarized waves in space plasmas, Plasma Phys. Control Fusion, 39, A237- A250.Google Scholar
  79. Tu, C.-Y., Pu, Z.-Y., and Wei, F.-S.: 1984, The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the governing equations and its solution, J. Geophys. Res., 89, 9695–9702.ADSCrossRefGoogle Scholar
  80. Tu, C.-Y.: 1987, A solar wind model with the power spectrum of Alfvénic fluctuations, Solar Phys., 109, 149–186.CrossRefADSGoogle Scholar
  81. Tu, C.-Y.: 1988, The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind, J. Geophys. Res., 93, 7–20.ADSGoogle Scholar
  82. Tu, C.-Y., and Marsch, E.: 1995a, MHD structures, waves and turbulence in the solar wind: Observations and theories, Space Science Reviews, 73, 1- 210.Google Scholar
  83. Tu, C.-Y., and Marsch, E.: 1995b, Comment on “Evolution of energy-containing turbulent eddies in the solar wind” by W. H. Matthaeus, S. Oughton, D. H. Pontius Jr., and Y. Zhou, J. Geophys. Res., 100, 12323–12328.CrossRefADSGoogle Scholar
  84. Tu, C.-Y., and Marsch, E. (1997): Two-fluid model for heating of the solar corona and acceleration of the solar wind by high-frequency Alfvén waves, Solar Physics, 171, 363–391.CrossRefADSGoogle Scholar
  85. Tu, C.-Y., Marsch, E., Wilhelm, K., and Curdt, W.: 1998, Ion temperatures in a solar polar coronal hole observed by SUMER on SOHO, Astrophys. J., 503, 475–482.Google Scholar
  86. von Steiger, R., Geiss, J., Gloeckler, G., and Galvin, A. B.: 1995, Kinetic properties of heavy ions in the solar wind from SWICS/Ulysses, Space Science Reviews, 72, 71–76.CrossRefADSGoogle Scholar
  87. Vasquez, B. J., and Hollweg, J.: 1998a, Formation of spherically polarizedAlfvénwaves and imbedded rotational discontinuities from a small number of entirely oblique waves, J. Geophys. Res., 103, 335.CrossRefADSGoogle Scholar
  88. Vasquez, B. J., and Hollweg, J.: 1998b, Formation of imbedded rotational discontinuities with nearly field aligned normals, J. Geophys. Res., 103, 349.Google Scholar
  89. Wang, Y. M., and Sheeley, N. R., Jr.: 1990, Solar wind speed and coronal flux-tube expansion, Astrophys. J., 355, 726.Google Scholar
  90. Wang, Y. M., Sheeley, N. R., Jr., Walters, J. H., Brueckner, G. E., Howard, R. A., Michels, D. J., Lamy, P. L., Schwenn, R., and Simnett, G. M.: 1998, Origin of streamer material in the outer corona, Astrophys. J., 498, L165.ADSGoogle Scholar
  91. Wilhelm, K., Curdt, W., Marsch, E., Sch¨uhle, U., Lemaire, P., Gabriel, A., Vial, J. C., Grewing, M., Huber, M. C. E., Jordan, S. D., Poland, A. I., Thomas, R. J., K¨uhne, M., Timothy, J. G., Hassler, D. M., and Siegmund, O. H. W.: 1995, SUMER - Solar Ultraviolet Measurements of Emitted Radiation, Solar Phys., 162, 189–231.CrossRefADSGoogle Scholar
  92. Wilhelm, K., Lemaire, P., Curdt, W., Sch¨uhle, U., Marsch, E., Poland, A. I., Jordan, S. D., Thomas, R. J., Hassler, D. M., Huber, M. C. E., Vial, J.-C., K¨uhne, M., Siegmund, O. H. W., Gabriel, A., Timothy, J. G., Grewing, M., Feldman, U., Hollandt, J., and Brekke, P.: 1997a, First results of the SUMER telescope and spectrometer on SOHO, Solar Phys., 170, 75–104.CrossRefADSGoogle Scholar
  93. Wilhelm, K., Marsch, E., Dwivedi, B. N., Hassler, D. M., Lemaire, P., Gabriel, A. H., and Huber, M. C. E.: 1998, The solar corona above polar coronal holes as seen by SUMER on SOHO, Astrophys. J., 500, 1023–1038.CrossRefADSGoogle Scholar
  94. Withbroe, G. L.: 1988, The temperature structure, mass and energy flow in the corona and inner solar wind, Astrophys. J., 325, 442–467.ADSGoogle Scholar
  95. Woch, J., Axford, W. I., Mall, U., Wilken, B., Livi, S., Geiss, J., Gloeckler, G., and Forsyth, R. J.: 1997, SWICS/Ulysses observations: The three-dimensional structure of the heliosphere during solar minimum, Geophys. Res. Lett., 24, 2885–2888.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • E. Marsch
    • 1
  1. 1.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany

Personalised recommendations