Water, Air, and Soil Pollution

, Volume 105, Issue 1–2, pp 21–30 | Cite as

Magic, Safe and Smart Model Applications at Integrated Monitoring Sites: Effects of Emission Reduction Scenarios

  • M. Forsius
  • M. Alveteg
  • A. Jenkins
  • M. Johansson
  • S. Kleemola
  • A. Lükewille
  • M. Posch
  • H. Sverdrup
  • C. Walse
Article

Abstract

Three well-known dynamic acidification models (MAGIC, SAFE, SMART) were applied to data sets from five Integrated Monitoring sites in Europe. The calibrated models were used in a policy-oriented framework to predict the long-term soil acidification of these background forest sites, given different scenarios of future deposition of S and N. Emphasis was put on deriving realistic site-specific scenarios for the model applications. The deposition was calculated with EMEP transfer matrices and official emissions for the target years 2000, 2005 and 2010. The alternatives for S deposition were current reduction plans and maximum feasible reductions. For N, the NOx and NHy depositions were frozen at the present level. For NOx, a reduction scenario of flat 30% reduction from present deposition also was utilized to demonstrate the possible effects of such a measure. The three models yielded generally consistent results. The ‘Best prediction’-scenario (including the effects of the second UN/ECE protocol for reductions of SO2 emissions and present level for NOx-emissions), resulted in many cases in a stabilization of soil acidification, although significant improvements were not always shown. With the exception of one site, the ‘Maximum Feasible Reductions’ scenario always resulted in significant improvements. Dynamic models are needed as a complement to steady-state techniques for estimating critical loads and assessing emission reduction policies, where adequate data are available.

acidification emission MAGIC model nitrogen SAFE SMART sulfur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alveteg, M., Walse, C. and Warfvinge, P.: 1998, Water, Air, Soil Pollut. (accepted).Google Scholar
  2. Asman, W. and Drukker, B.: 1988, Atmos. Environ. 22, 725.Google Scholar
  3. Bull, K.R.: 1995, Water, Air, Soil Pollut. 85, 201.Google Scholar
  4. Cofala, J. and Schöpp, W.: 1995, ‘Assessing Future Acidification in Europe; Current State of the RAINS Model Development’, Note prepared for the 15th meeting of the UNECE Task Force on Integrated Assessment Modelling, The Hague, The Netherlands.Google Scholar
  5. Cosby, B.J., Hornberger, G.M. and Galloway, J.N.: 1985, Water Resourc. Res. 21, 51.Google Scholar
  6. De Vries, W., Posch, M. and Kämäri, J.: 1989, Water, Air, Soil Pollut. 48, 349.Google Scholar
  7. De Vries, W., Posch, M., Reinds, G.J. and Kämäri, J.: 1994, Water, Air, Soil Pollut. 78, 215.Google Scholar
  8. De Vries, W., Posch, M., Oja, T., van Oene, H., Kros, H., Warfvinge, P. and Arp, P.: 1995, Ecol. Model. 83, 283.Google Scholar
  9. Forsius, M., Johansson, M., Posch, M., Holmberg, M., Kämäri, J., Lepistö, A., Roos, J., Syri, S. and Starr, M.: 1997, Boreal Environ. Res. 2, 129.Google Scholar
  10. Hedin, L.O., Granat, L., Likens, G.E., Buishand, T.A., Galloway, J.N., Butler, T.J. and Rodhe, H.: 1994, Nature 367, 351.Google Scholar
  11. Jenkins, A., Whitehead, P.G., Musgrove, T.J. and Cosby, B.J.: 1990, J. Hydrol. 116, 403.Google Scholar
  12. Johansson, M., Alveteg, M., Walse, C. and Warfvinge, P.: 1996, ‘Derivation of Deposition and Uptake Scenarios’, in M. Knoflacher, J. Schneider, and G. Soja (eds.), International Workshop on Exceedance of Critical Loads and Levels, Conference papers BD.15/vol.15, Federal Environment Agency, Vienna, Austria.Google Scholar
  13. Kämäri, J., Posch, M., Kähkönen, A-M. and Johansson, M.: 1994, Sci. Total Environ. 160/161, 687.Google Scholar
  14. Kleemola, S. and Forsius, M. (eds.): 1996, ICP Integrated Monitoring,5th Annual Report, The Finnish Environment 27, Finnish Environment Institute, Helsinki.Google Scholar
  15. Løkke, H., Bak, J., Falkengren-Grerup, U., Finlay, R.D., Ilvesniemi, H., Nygaard, P.H. and Starr, M.: 1996, Ambio 25, 510.Google Scholar
  16. Mälkönen, E.: 1975, Annual Primary Production and Nutrient Cycle in some Scots Pine Stands, Communicationes Instituti Forestalis Fennia 84, Helsinki, Finland.Google Scholar
  17. Marklund, L.G.: 1988, Biomass Functions for Pine, Spruce and Birch in Sweden, Swedish Agricultural University 45, Uppsala, Sweden.Google Scholar
  18. Mylona, S.: 1993, Trends of Sulphur Dioxide Emissions, Air Concentrations and Depositions of Sulphur in Europe since 1880, EMEP/MSC-W Report 2, Oslo, Norway.Google Scholar
  19. Sverdrup, H., Warfvinge, P., Blake L. and Goulding K.: 1995, Agric. Ecosystems Environ. 53, 161.Google Scholar
  20. Tiktak, A. and Van Grinsven, H.J.M.: 1995, Ecol. Model. 83, 35.Google Scholar
  21. Warfvinge, P. and Sverdrup, H.: 1992, Water, Air, Soil Pollut. 63, 119.Google Scholar
  22. Wright, R, Holmberg, M., Posch, M. and Warfvinge, P.: 1991, Dynamic Models for Predicting Soil and Water Acidification: Application to Three Catchments in Fennoscandia, Acid Rain Research Report 25, Norwegian Institute for Water Research, Oslo.Google Scholar
  23. Wright, R.F. and Schindler, D.W.:1995, Water, Air, Soil Pollut. 85, 89.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Forsius
    • 1
  • M. Alveteg
    • 2
  • A. Jenkins
    • 3
  • M. Johansson
    • 1
  • S. Kleemola
    • 1
  • A. Lükewille
    • 4
  • M. Posch
    • 5
  • H. Sverdrup
    • 2
  • C. Walse
    • 2
  1. 1.Finnish Environment InstituteHelsinkiFinland
  2. 2.Chemical Engineering IILund UniversityLundSweden
  3. 3.Institute of HydrologyWallingford, OXON, OxfordshireUnited Kingdom
  4. 4.Norwegian Institute for Air ResearchKjellerNorway
  5. 5.RIVMBilthovenThe Netherlands

Personalised recommendations