Synthese

, Volume 117, Issue 1, pp 31–52

Bohm's Ontological Interpretation and its Relations to Three Formulations of Quantum Mechanics

  • Frederick M. Kronz
Article
  • 93 Downloads

Abstract

The standard mathematical formulation of quantum mechanics is specified. Bohm's ontological interpretation of quantum mechanics is then shown to be incapable of providing a suitable interpretation of that formulation. It is also shown that Bohm's interpretation may well be viable for two alternative mathematical formulations of quantum mechanics, meaning that the negative result is a significant though not a devastating criticism of Bohm's interpretation. A preliminary case is made for preferring one alternative formulation over the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Akhiezer, N. I. and I. M. Glazman: 1993, Theory of Linear Operators in Hilbert Space, Dover Publications, New York: Originally published in New York by F. Ungar Pub. Co., 1961, 1963.Google Scholar
  2. Amrein, W. O., J. M. Jauch, and K. B. Sinha: 1977, Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods, W. A. Benjamin, Reading, Mass.Google Scholar
  3. Antoine, J. P.: 1969, 'Dirac Formalism and Symmetry Problems in Quantum Mechanics I and II', Journal of Mathematical Physics 10, 53-69, 2276–2290.CrossRefGoogle Scholar
  4. Antoniou, I. and S. Tasaki: 1993, 'Generalized Spectral Decompositions of Mixing Dynamical Systems', International Journal of Quantum Chemistry 46, 425-474.CrossRefGoogle Scholar
  5. Berndl, K.: 1996, 'Global Existence of Bohmian Trajectories', in Bohmian Mechanics and Quantum Theory: An Appraisal, Kluwer, Boston.Google Scholar
  6. Blank, J., P. Exner, and M. Havlicek: 1994, Hilbert Space Operators in Quantum Physics, American Institute of Physics, New York.Google Scholar
  7. Bogolubov, N. N., A. A. Logunov, and I. T. Todorov: 1975, Introduction to Axiomatic Quantum Field Theory, W. A. Benjamin, Reading, Mass.Google Scholar
  8. Bohm, D.: 1951, Quantum Theory, Prentice-Hall, New York.Google Scholar
  9. Bohm, D.: 1952, 'A Suggested Interpretation of the Quantum Theory in Terms of 'Hidden' Variables, I and II', Physical Review 85, 166-179, 180–193.CrossRefGoogle Scholar
  10. Bohm, A.: 1966, 'Rigged Hilbert Space and Mathematical Description of Physical Systems', in Lectures in Theoretical Physics 9A: Mathematical Methods of Theoretical Physics, Wiley, New York.Google Scholar
  11. Bohm, A. and M. Gadella: 1989, Dirac Kets, Gamow Vectors and Gel'fand Triplets, Springer-Verlag, New York.Google Scholar
  12. Bohm, A., S. Maxon, M. Loewe, and M. Gadella: 1997, 'Quantum Mechanical Irreversibility', Physica A 236, 485-549.CrossRefGoogle Scholar
  13. Bratteli, O. and D. W. Robinson: 1987, Operator Algebras and Quantum Statistical Mechanics 1, Springer-Verlag, New York.Google Scholar
  14. Cohen-Tannoudji, C., B. Diu, and F. Laloë: 1977, Quantum Mechanics, Wiley, New York.Google Scholar
  15. Constantinescu, F.: 1980, Distributions and Their Applications in Physics, Pergamon Press, New York.Google Scholar
  16. Cushing, J. T.: 1994, Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony, University of Chicago Press, Chicago.Google Scholar
  17. Dubin, D. A. and M. A. Henning: 1990, Quantum Mechanics, Algebras, and Distributions, Longman Scientific & Technical, Harlow, Essex, England.Google Scholar
  18. Gel'fand, I. M. and G. E. Shilov: 1964, Generalized Functions II: Fundamental and Generalized Functions, Academic Press, New York. [Translation of the 1958 Russian edition.]Google Scholar
  19. Gel'fand, I. M. and N. Y. Vilenkin: 1964, Generalized Functions IV: Applications of Harmonic Analysis, Academic Press, New York. [Translation of the 1961 Russian edition.]Google Scholar
  20. Gottfried, K.: 1974, Quantum Mechanics, W. A. Benjamin, New York.Google Scholar
  21. Haag, R.: 1992, Local Quantum Physics, Springer-Verlag, New York.Google Scholar
  22. Holland, P.R.: 1993, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, Cambridge University Press, New York.Google Scholar
  23. Horvath, J.: 1966, Topological Vector Spaces and Distributions, Addison-Wesley, Reading, MA.Google Scholar
  24. Jammer, M.: 1966, The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York.Google Scholar
  25. Jauch, J. M.: 1968, Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA.Google Scholar
  26. Jordan, T. F.: 1969, Linear Operators for Quantum Mechanics, Wiley, New York.Google Scholar
  27. Melsheimer, O.: 1972, 'Rigged Hilbert Space Formalism as an Extended Mathematical Formalism for Quantum Systems I and II', Journal of Mathematical Physics 15, 902-926.CrossRefGoogle Scholar
  28. Merzbacher, E.: 1970, Quantum Mechanics, Second edition, Wiley, New York.Google Scholar
  29. Messiah, A.: 1961, Quantum Mechanics, Wiley, New York.Google Scholar
  30. Nagel, B.: 1989, 'Introduction to Rigged Spaces', in Resonances, Springer-Verlag, New York.Google Scholar
  31. Pauling, L. and E. B. Wilson: 1935, Introduction to Quantum Mechanics, with Applications to Chemistry, McGraw-Hill, New York. Republished by Dover Publications, 1985.Google Scholar
  32. Petrosky, T. and I. Prigogine: 1997, 'The Liouville Space Extension of Quantum Mechanics', Advances in Chemical Physics 99, 1-120.Google Scholar
  33. Prugovecki, E.: 1981, Quantum Mechanics in Hilbert Space, Second edition, Academic Press, New York.Google Scholar
  34. Reed, M. and B. Simon: 1980, Methods of Modern Mathematical Physics, Volume I: Functional Analysis, Academic Press, New York.Google Scholar
  35. Roberts, J. E.: 1966, 'The Dirac Bra and Ket Formalism', Journal of Mathematical Physics 7, 1097-1104.CrossRefGoogle Scholar
  36. Roberts, J. E.: 1966, 'Rigged Hilbert Space in Quantum Mechanics', Communications in Mathematical Physics 3, 98-119.CrossRefGoogle Scholar
  37. Schiff, L. I.: 1968, Quantum Mechanics, Third edition, McGraw-Hill, New York.Google Scholar
  38. Schwartz, L.: 1966, Theorie des Distributions, New edition, revised and augmented, Hermann, Paris. [First published in 1950–1951.]Google Scholar
  39. Streater, R. F. and A. S. Wightman: 1964, PCT, Spin and Statistics, and All That, W. A. Benjamin, New York.Google Scholar
  40. Suchanecki, Z., I. Antoniou, S. Tasaki, and O. F. Bandtlow: 1996, 'Rigged Hilbert Spaces for Chaotic Dynamical Systems', Journal of Mathematical Physics 37, 5837-5847.CrossRefGoogle Scholar
  41. Sudbery, A.: 1986, Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians, Cambridge University Press, New York.Google Scholar
  42. Treves, F.: 1967, Topological Vector Spaces, Distributions and Kernals, Academic Press, New York.Google Scholar
  43. Van Eijndhoven, S. J. L. and J. de Graaf: 1986, A Mathematical Introduction to Dirac's Formalism, North-Holland, New York.Google Scholar
  44. Von Neumann, J.: 1955, Mathematical Foundations of Quantum Mechanics, Princeton University Press, N.J.[First published in German in 1932.]Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Frederick M. Kronz
    • 1
  1. 1.Department of PhilosophyThe University of Texas at AustinAustinU.S.A.

Personalised recommendations