Journal of Biological Physics

, Volume 23, Issue 3, pp 171–179 | Cite as

Vibrations in Microtubules

  • J. Pokorný
  • F. Jelínek
  • V. Trkal
  • I. Lamprecht
  • R. Hölzel


Vibrations in microtubules and actin filaments are analysed using amethod similar to that employed for description of lattice vibrationsin solid state physics. The derived dispersion relations show thatvibrations in microtubules can have optical and acoustical branches.The highest frequency of vibrations in microtubules and in actinfilaments is of the order of 108 Hz. Vibrations are polar andinteraction with surroundings is mediated by the generatedelectromagnetic field. Supply of energy from hydrolysis of guanosinetriphosphate (GTP) in microtubules and of adenosine triphosphate(ATP) in actin filaments may excite the vibrations.

Vibrations in microtubules Vibrations in actin filaments Microtubule translation symmetry Dispersion relation Energy supply to cyto-skeleton Hydrolysis of GTP Hydrolysis of ATP Fröhlich's condensation in cytoskeleton Nonlinearity in cytoskeleton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mandelkow, E., Mandelkow, E.-M., Hotani, H., Hess, B. and Müller, S.C.: Spatial Patterns from Oscillating Microtubules, Science 246(1989), 1291–1293.Google Scholar
  2. 2.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D.: Molecular Biology of the Cell. York & London: Garland Publishing, 1994.Google Scholar
  3. 3.
    Satarić, M. V., Tuszyński, J.A., Hameroff, S. and Zakula, R.B.: Microtubules and Their Role in Neuromolecular Computing, Neural Network World 4(1994), 281–294.Google Scholar
  4. 4.
    Tuszyński, J.A., Hameroff, S., Satarić, M.V., Trpisová, B. and Nip, M.L.A.: Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly, J. theor. Biol. 174(1995), 371–380.Google Scholar
  5. 5.
    Tuszyński, J.A., Trpisová, B. and Sept, D.: From Erratic to Coherent Behaviour in the Assembly of Microtubules, Neural Network World 5(1995), 675–688.Google Scholar
  6. 6.
    Caplow, M., Ruhlen, R.L. and Shanks, J.: The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice, J. Cell Biol. 127(1994), 779–788.Google Scholar
  7. 7.
    Dekker, J.A.: Solid State Physics. Englewood Cliffs: Prentice-Hall, 1957.Google Scholar
  8. 8.
    Käs, J., Strey, H., Tang, J.X., Finger, D., Ezzell, R., Sackmann, E. and Janmey, P.A.: F-Actin, a Model Polymer for Semiflexible Chains in Dilute, Semidilute, and Liquid Crystalline Solutions, Biophys. J. 70(1996), 609–625.Google Scholar
  9. 9.
    Sato, M., Schwartz, W.H., Selden, S.Ch. and Pollard, T.D.: Mechanical Properties of Brain Tubulin and Microtubules, J. Cell Biol. 106(1988), 1205–1211.Google Scholar
  10. 10.
    Janmey, P.A., Euteneuer, U., Traub, P. and Schliwa, M.: Viscoelastic Properties of Vimentin Compared with Other Filamentous Biopolymer Networks, J. Cell Biol. 113(1991), 155–160.Google Scholar
  11. 11.
    Leterrier, J.F., Käs, J., Hartwig, J., Vegners, R. and Janmey, P.A.: Mechanical Effects of Neuro-filament Cross-bridges, The J. Biol. Chem. 271(1996), 15687–15694.Google Scholar
  12. 12.
    Janmey, P.A.: Coping with Cellular Stress: The Mechanical Resistance of Porous Protein Networks, Biophys. J. 71(1996), 3–7.Google Scholar
  13. 13.
    MacKintosh, F.C., Käs, J. and Janmey, P.A.: Elasticity of Semiflexible Biopolymer Networks, Phys. Rev. Lett. 75(1995), 4425–4428.Google Scholar
  14. 14.
    Caplow, M. and Shanks, J.: Induction of Microtubule Catastrophe by Formation of Tubulin–GDP and Apotubulin Subunits at Microtubule Ends. Biochemistry 34(1995), 15732–15741.Google Scholar
  15. 15.
    Caplow, M. and Shanks, J.: Evidence that a Single Monolayer Tubulin–GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules, Molec. Biol. Cell 7(1996), 663–675.Google Scholar
  16. 16.
    Satarić, M.V., Tuszyński, J.A. and Žakula, R.B.: Kinklike excitations as an energy-transfer mechanism in microtubules, Phys. Rev. E 48(1993), 589–597.Google Scholar
  17. 17.
    Fröhlich, H.: Bose Condensation of Strongly Excited Longitudinal Electric Modes, Phys. Lett. 26A(1968), 402–403.Google Scholar
  18. 18.
    Fröhlich, H.: Long-range coherence and energy storage in biological systems, Int. J. Quant. Chem. II(1968), 641–649.Google Scholar
  19. 19.
    Fröhlich, H.: The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Phys. 53(1980), 85–152.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • J. Pokorný
    • 1
    • 2
  • F. Jelínek
    • 2
  • V. Trkal
    • 2
  • I. Lamprecht
    • 3
  • R. Hölzel
    • 3
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Institute of Radio Engineering and ElectronicsAcademy of Sciences of Czech RepublicPragueCzech Republic
  3. 3.Institute of Biophysics of Free UniversityBerlinGermany

Personalised recommendations