Geometriae Dedicata

, Volume 68, Issue 2, pp 229–243 | Cite as

Groups that are Almost Homogeneous

  • Helmut Mäurer
  • Markus Stroppel


We classify those groups whose automorphism group has at most three orbits. In other words, we classify those groups whose holomorph is a rank 3 permutation group.

automorphisms of groups Heisenberg groups quaternion groups Suzuki 2-groups. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin, E.: Geometric Algebra, Interscience, New York, 1957.Google Scholar
  2. 2.
    Bourbaki, N.: Elements of Mathematics, Algebra I, Springer, Berlin, 1989.Google Scholar
  3. 3.
    Cronheim, A.: T-groups and their geometry, Illinois J. Math. 9(1965), 1–30.Google Scholar
  4. 4.
    Fuchs, L.: Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.Google Scholar
  5. 5.
    Gorenstein, D.: Finite Groups, Harper and Row, New York, 1968.Google Scholar
  6. 6.
    Greub, W. H.: Multilinear Algebra, Springer, Berlin, 1967.Google Scholar
  7. 7.
    Higman, G.: Suzuki 2-groups, Illinois J. Math. 7(1963), 79–96.Google Scholar
  8. 8.
    Higman, G., Neumann, B. H. and Neumann, H.: Embedding theorems for groups, J. London Math. Soc. 24(1949), 247–254.Google Scholar
  9. 9.
    Jacobson, N.: Basic Algebra I, 2nd edn, Freeman, New York, 1985.Google Scholar
  10. 10.
    Jungnickel, D.: Finite Fields: Structure and Arithmetics, BI-Wissenschaftsverlag, Mannheim, 1993.Google Scholar
  11. 11.
    Kaplansky, I.: Infinite Abelian Groups, University of Michigan Press, Ann Arbor, Michigan, 1954.Google Scholar
  12. 12.
    Lang, S.: Algebra, Addison-Wesley, Reading, 1993.Google Scholar
  13. 13.
    Lüneburg, H.: Die Suzukigruppen und ihre Geometrien, Lecture Notes in Math. 10, Springer, Berlin, 1965.Google Scholar
  14. 14.
    Murty, M. Ram: Artin's conjecture for primitive roots, Math. Intelligencer 10(4) (1988), 59–67.Google Scholar
  15. 15.
    Ol'shanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\), A. Yu.: Geometry of Defining Relations in Groups, Math. Appl. (Soviet Ser.) 70, Kluwer Academic Publ., Dordrecht, 1991Google Scholar
  16. 16.
    Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R. and Stroppel, M.: Compact Projective Planes, Expositions in Mathematics 21, De Gruyter, Berlin, 1996.Google Scholar
  17. 17.
    Stroppel, M.: Locally Compact Groups with Many Automorphisms, Manuscript, Stuttgart, in preparation.Google Scholar
  18. 18.
    Stroppel, M.: Homogeneous locally compact groups, J. Algebra, to appear.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Helmut Mäurer
    • 1
  • Markus Stroppel
    • 2
  1. 1.Fachbereich Mathematik der THDarmstadtGermany
  2. 2.Mathematisches Institut B/1Universität Stuttgart, GermanyStuttgartGermany

Personalised recommendations