Studia Logica

, Volume 59, Issue 3, pp 303–330 | Cite as

Cut-Free Tableau Calculi for some Intuitionistic Modal Logics

  • Mauro Ferrari


In this paper we provide cut-free tableau calculi for the intuitionistic modal logics IK, ID, IT, i.e. the intuitionistic analogues of the classical modal systems K, D and T. Further, we analyse the necessity of duplicating formulas to which rules are applied. In order to develop these calculi we extend to the modal case some ideas presented by Miglioli, Moscato and Ornaghi for intuitionistic logic. Specifically, we enlarge the language with the new signs Fc and CR near to the usual signs T and F. In this work we establish the soundness and completeness theorems for these calculi with respect to the Kripke semantics proposed by Fischer Servi.

intuitionistic modal logics refutation systems Kripke models duplications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Amati and F. Pirri, 1994, A uniform tableau method for intuitionistic modal logics I*, Studia Logica, 53(1):29–60.Google Scholar
  2. [2]
    M.J. Cresswell and G.E. Hughes, 1984, A Companion to Modal Logic, Methuen.Google Scholar
  3. [3]
    G. Fischer Servi, 1981, Completeness for non normal intuitionistic modal logics, Note di Matematica, 1:203–212.Google Scholar
  4. [4]
    G. Fischer Servi, 1984, Axiomatizations for some intuitionistic modal logics, Rend. Sem. Mat. Univers. Polit. Torino, 42:179–194.Google Scholar
  5. [5]
    M. Fitting, 1983, Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht.Google Scholar
  6. [6]
    D.M. Gabbay, 1981, Semantical Investigations in Heyting's Intuitionistic Logic, Reidel, Dordrecht.Google Scholar
  7. [7]
    P. Miglioli, U. Moscato, and M. Ornaghi, 1994, How to avoid duplications in refutation systems for intuitionistic logic and Kuroda logic, In K. Broda, M. D'Agostino, R. Goré, R. Johnson, and S. Reeves, editors, Theorem Proving with Analytic Tableaux and Related Methods: 3rd International Workshop, Abingdon, U.K., 169–187.Google Scholar
  8. [8]
    P. Miglioli, U. Moscato, and M. Ornaghi, 1994, An improved refutation system for intuitionistic predicate logic, Journal of Automated Reasoning, 12:361–373.Google Scholar
  9. [9]
    P. Miglioli, U. Moscato, and M. Ornaghi, 1995, Refutation systems for propositional modal logics, In P. Baumgartner, R. Hänle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods: 4th International Workshop, Schloss Rheinfels, St. Goar, Germany, volume 918, 95–105. Springer-Verlag.Google Scholar
  10. [10]
    G. Plotkin and C. Stirling, 1986, A framework for intuitionistic modal logic, In J.Y. Halpern, editor, Theoretical Aspects of Reasoning about Knowledge, 399–406, Morgan-Kaufmann.Google Scholar
  11. [11]
    R.M. Smullyan, 1968, First-Order Logic, Springer, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mauro Ferrari
    • 1
  1. 1.Dipartimento di Scienze dell'InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations