Solar Physics

, Volume 180, Issue 1–2, pp 65–79 | Cite as

Resonant Absorption of Nonlinear Slow MHD Waves in Isotropic Steady Plasmas - I. Theory

  • István Ballai
  • Róbert Erdélyi
Article

Abstract

This paper considers driven resonant nonlinear slow magnetohydrodynamic (MHD) waves in dissipative steady plasmas. A theory developed by Ruderman, Hollweg, and Goossens (1997) is used and extended to study the effect of steady flows on the nonlinear resonant behaviour of slow MHD waves in slow dissipative layers. The method of matched asymptotic expansions is used to describe the behaviour of the wave variables in the slow dissipative layer. The nonlinear analogue of the connection formulae for slow MHD waves obtained previously by Goossens, Hollweg, and Sakurai (1992) and Erdélyi (1997) in linear MHD, are derived. The effect of an equilibrium flow results partly in a Doppler shift of the available frequency for slow resonance and partly in the modification of the width of the dissipative layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballai, I., Erdélyi, R., and Ruderman, M. S.: 1997, Phys. Plasmas, submitted.Google Scholar
  2. Ballai, I., Ruderman, M. S., and Erdélyi, R.: 1998, Phys. Plasmas, in press.Google Scholar
  3. Čadež, V. M. and Ballester, J. L.: 1996, Astron. Astrophys. 305, 977.Google Scholar
  4. Čadež, V. M., Csík, A., Erdélyi, R., and Goossens, M.: 1997, Astron. Astrophys. 326, 1241.Google Scholar
  5. Csík, A., Erdélyi, R., and Čadež, V. M.: 1997, Solar Phys. 172, 61.Google Scholar
  6. Doyle, J. G., O'Shea, E., Erdélyi, R., Dere, K. P., Socker, D. G., and Keenan, F. P.: 1997, Solar Phys. 173, 243.Google Scholar
  7. Erdélyi, R.: 1997, Solar Phys. 171, 49.Google Scholar
  8. Erdélyi, R.: 1998, Solar Phys. 180, 213 (this issue).Google Scholar
  9. Erdélyi, R. and Goossens, M.: 1996, Astron. Astrophys. 313, 664.Google Scholar
  10. Erdélyi, R., Goossens, M., and Ruderman, M. S.: 1995, Solar Phys. 161, 123.Google Scholar
  11. Goossens, M., Hollweg, J. V., and Sakurai, T.: 1992, Solar Phys. 138, 233.Google Scholar
  12. Goossens, M., Ruderman, M. S., and Hollweg, J. V.: 1995, Solar Phys. 157, 75.Google Scholar
  13. Hollweg, J. V.: 1987, Astrophys. J. 312, 880.Google Scholar
  14. Hollweg, J. V.: 1988, Astrophys. J. 335, 1005.Google Scholar
  15. Hollweg, J. V. and Yang, G.: 1988, J. Geophys. Res. 93, 5423.Google Scholar
  16. Keppens, R.: 1996, Astrophys. J. 468, 907.Google Scholar
  17. Nayfeh, A. H.: 1981, Introduction to Perturbation Techniques, Wiley Interscience, New York.Google Scholar
  18. Ruderman, M. S., Goossens, M., and Hollweg, J. V.: 1997, Phys. Plasmas 4, 91.Google Scholar
  19. Ruderman, M. S., Hollweg, J. V., and Goossens, M.: 1997, Phys. Plasmas 4, 75 (RHG).Google Scholar
  20. Sakurai, T., Goossens, M., and Hollweg, J. V.: 1991, Solar Phys. 133, 227.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • István Ballai
    • 1
  • Róbert Erdélyi
    • 2
  1. 1.Department of AstronomyEötvös L. UniversityBudapestHungary
  2. 2.School of Mathematical and Computational SciencesUniversity of St. AndrewsSt. AndrewsScotland, U.K

Personalised recommendations