Solar Physics

, Volume 180, Issue 1–2, pp 213–229 | Cite as

Resonant Absorption of Alfvén Waves in Steady Coronal Loops

  • Róbert Erdélyi


The effect of equilibrium flow on linear Alfvén resonances in coronal loops is studied in the compressible viscous MHD model. By means of a finite element code, the full set of linearised driven MHD equations are solved for a one-dimensional equilibrium model in which the equilibrium quantities depend only on the radial coordinate. Computations of resonant absorption of Alfvén waves for two classes of coronal loop models show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We find that a steady equilibrium shear flow can also significantly influence the resonant absorption of Alfvén waves in coronal magnetic flux tubes. The presence of an equilibrium flow may therefore be important for resonant Alfvén waves and coronal heating. A parametric analysis also shows that the resonant absorption can be strongly enhanced by the equilibrium flow, even up to total dissipation of the incoming wave.


Flux Tube Coronal Loop Finite Element Code Loop Model Incoming Wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appert, K., Vaclavik, J., and Villard, L.: 1984, LPR 238/84.Google Scholar
  2. Bray, R. J., Cram, L. E., Durrant, C. J., and Loughhead, R. E.: 1991, Plasma Loops in the Solar Corona, Cambridge University Press, Cambridge, p. 156.Google Scholar
  3. Brekke, P., Kjeldseth-Moe, O., and Harrison, R. A. 1997, Solar Phys. 175, 511.Google Scholar
  4. Brekke, P., Kjeldseth-Moe, O., Brynildsen, N., Maltby, P., Haugan, S. V. H., Harrison, R. A., Thompson, W. T., and Pike, C. D. 1997, Solar Phys. 170, 163.Google Scholar
  5. Davila, J. M.: 1987, Astrophys. J. 317, 514.Google Scholar
  6. Doyle, J. G., O'Shea, E., Erdélyi, R., Dere, K. P., Socker, D. J, and Keenan, F. P.: 1997, Solar Phys. 173, 243.Google Scholar
  7. Erdélyi, R. and Goossens, M.: 1995, Astron. Astrophys. 294, 575.Google Scholar
  8. Erdélyi, R. and Goossens, M.: 1996, Astron. Astrophys. 313, 664.Google Scholar
  9. Erdélyi, R., Goossens, M., and Ruderman, M. S.: 1995, Solar Phys. 161, 123.Google Scholar
  10. Foukal, P.: 1978, Astrophys. J. 223, 1046.Google Scholar
  11. Goossens, M. and Hollweg, J. V.: 1993, Solar Phys. 145, 19.Google Scholar
  12. Goossens, M. and Ruderman, M. S.: 1996, Phys. Scripta T60, 171.Google Scholar
  13. Goossens, M., Hollweg, J. V., and Sakurai, T.: 1992, Solar Phys. 138, 233.Google Scholar
  14. Ionson, J. A.: 1978, Astrophys. J. 226, 650.CrossRefGoogle Scholar
  15. Ofman, L. and Davila, J. M.: 1995, J. Geophys. Res. 100, 23427.Google Scholar
  16. Poedts, S. and Goedbloed, J. P.: 1997, Astron. Astrophys., in press.Google Scholar
  17. Poedts, S., Goossens, M., and Kerner, W. 1989, Solar Phys. 123, 83.Google Scholar
  18. Poedts, S., Goossens, M., and Kerner, W.: 1990, Astrophys. J. 360, 279.Google Scholar
  19. Sakurai, T., Goossens, M., and Hollweg, J. V.: 1991, Solar Phys. 133, 227.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Róbert Erdélyi
    • 1
  1. 1.Center for Plasma-Astrophysics, K.U. LeuvenHeverleeBelgium

Personalised recommendations