Synthese

, Volume 114, Issue 1, pp 13–23 | Cite as

On Göde's Philosophical Assumptions

  • Jaakko Hintikka

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Dawson, J.: 1997, Logical Dilemmas: The Life and Work of Kurt Gödel, A. K. Peters, Wellesley, MA.Google Scholar
  2. Gödel, K.: 1986-, in S. Feferman et al. (eds.), Collected Works, three volumes to date, Oxford University Press, New York.Google Scholar
  3. Gödel, K.: 1964, ‘Revised and Expanded Version of Gödel 1947’, in Benacerraf and Putnam 1964, pp. 258–273. (Reprinted in Gödel 1986-, Vol. II, pp. 254–270).Google Scholar
  4. Gödel, K.: 1958, ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’, Dialectica 12, 280–7. (Reprinted in Gödel 1986-, Vol. II, pp. 240–251).Google Scholar
  5. Gödel, K.: 1947, ‘What is Cantor's Continuum Problem?’, American Mathematical Monthly 54, 515–25; errata 55, 151. (Reprinted with corrections in Gödel 1986-, Vol. II, pp. 176–87).Google Scholar
  6. Gödel, K.: 1944, ‘Russell's Mathematical Logic’, in P. A. Schilpp (ed.), The Philosophy of Bertrand Russell, Northwestern University Press, Evanston, IL, pp. 123–153. (Reprinted in Gödel 1986-, Vol. II, pp. 119–41).Google Scholar
  7. Gödel, K.: 1940, The Consistency of the Axiom of Choice and of the Generalised Continuum Hypothesis with the Axioms of Set Theory, Princeton University Press, Princeton. (Reprinted in Gödel 1986-, Vol. II, pp. 33–101).Google Scholar
  8. Gödel, K.: 1931, ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”, Monatshefte für Mathematik und Physik 38, 173–98. (Reprinted and translated in Gödel 1986-, Vol. I, pp. 144–95).Google Scholar
  9. Gödel, K.: 1930, ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’, Monatshefte für Mathematik und Physik 37, 349–60. (Reprinted and translated in Gödel 1986-, Vol. I, pp. 102–23).Google Scholar
  10. Henkin, L.: 1950, ‘Completeness in the Theory of Types’, Journal of Symbolic Logic 15, 81–91.Google Scholar
  11. Hintikka, J.: forthcoming, ‘Truth-Definitions, Skolem Functions and Set Theory’.Google Scholar
  12. Hintikka, J.: 1996, The Principles of Mathematics Revisited, Cambridge University Press, Cambridge, UK.Google Scholar
  13. Hintikka, J.: 1993, ‘New Foundations for Mathematical Theories’, in J. Oikkonen and J. Väänänen (eds.), Logic Colloquium '90, Springer-Verlag, Berlin, pp. 122–44.Google Scholar
  14. Kant, I.: 1783, Prolegomena to Any Future Metaphysics.Google Scholar
  15. Kreisel, G.: 1980, ‘Kurt Gödel 1906–1978’, Biographical Memoirs of Fellows of the Royal Society 28, 148–224.Google Scholar
  16. Kripke, S.: 1980, Naming and Necessity, Harvard University Press, Cambridge, USA.Google Scholar
  17. Lewis, D.: 1986, On the Plurality of Worlds, Blackwell, Oxford, UK.Google Scholar
  18. Montague, R.: 1974, Formal Philosophy, in R. H. Thomason (ed.), Yale University Press, New Haven, USA.Google Scholar
  19. Ramsey, F.: 1925, ‘The Foundations of Mathematics’, Proceedings of the London Mathematical Society Ser. 2 25(5), 338–84. (Reprinted in R. B. Braithwaite (ed.), The Foundations of Mathematics and Other Logical Essays, Routledge and Kegan Paul, London, 1931, pp. 1–61.Google Scholar
  20. Russell, Bertrand, 1919, Introduction to Mathematical Philosophy, Allen & Unwin, London.Google Scholar
  21. Scott, D.: 1993 (original 1968), ‘A Game-Theoretical Interpretation of Logical Formulae’, Yearbook of Kurt Gödel Society 1991, pp. 47–48.Google Scholar
  22. Wang, H.: 1997, A Logical Journey: From Gödel to Philosophy, MIT Press, Cambridge, USA.Google Scholar
  23. Wang, H.: 1987, Reflections on Kurt Gödel, MIT Press, Cambridge, USA.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jaakko Hintikka
    • 1
  1. 1.Department of PhilosophyBoston UniversityBostonUSA

Personalised recommendations