Space Science Reviews

, Volume 86, Issue 1–4, pp 563–612 | Cite as

Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer

  • D.J. McComas
  • S.J. Bame
  • P. Barker
  • W.C. Feldman
  • J.L. Phillips
  • P. Riley
  • J.W. Griffee
Article

Abstract

The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity) for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE; and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axford, W. I.: 1985, ‘The Solar Wind’, Solar Phys. 100, 575.CrossRefADSGoogle Scholar
  2. Bame, S. J., Asbridge, J. R., Feldman, W. C., Fenimore, E. E., and Gosling, J. T.: 1979, ‘Solar Wind Heavy Ions from Flare-Heated Coronal Plasma’, Solar Phys. 62, 179.CrossRefADSGoogle Scholar
  3. Bame, S. J., McComas, D. J., Barraclough, B. L., Phillips, J. L., Sofaly, K. J., Chavez, J. C., Goldstein, B. E., and Sakurai, R. K.: 1992, ‘The Ulysses Solar Wind Plasma Experiment’, Astron. Astrophys. Suppl. Ser. 92, 237.ADSGoogle Scholar
  4. Barraclough, B. L., Feldman, W. C., Gosling, J. T., McComas, D. J., Phillips, J. L., and Goldstein, B. E.: 1996, in D. Winterhalter, J. T. Gosling, S. R. Habbal, W. S. Kurth, and M. Neugebauer (eds.), ‘He Abundance Variations in the Solar Wind: Observations from Ulysses’, Solar Wind Eight, AIP Proc. 382, New York, p. 277.Google Scholar
  5. Borrini, G., Gosling, J. T., Bame, S. J., Feldman, W. C., and Wilcox, J. M.: 1981, ‘Solar Wind Helium and Hydrogen Structure Near the Heliospheric Current Sheet: a Signal of Coronal Streamers at 1 AU’, J. Geophys. Res. 86, 4565.ADSGoogle Scholar
  6. Borrini, G., Gosling, J. T., Bame, S. J., and Feldman, W. C.: 1982, ‘Helium Abundance Enhancements in the Solar Wind’, J. Geophys. Res. 87, 7370.ADSGoogle Scholar
  7. Dere, K. P.: 1994, ‘Explosive Events, Magnetic Reconnection, and Coronal Heating’, Adv. Space Res. 14, 13.CrossRefADSGoogle Scholar
  8. Feldman, W. C. and Marsch, E.: 1997, in J. R. Jokipii, J. R. Sonett, C. P. Giampapa, and M. S. Mathews (eds.), ‘Kinetic Phenomena in the Solar Wind’, Cosmic Winds and the Heliosphere, University Arizona Press, Tucson, in press.Google Scholar
  9. Feldman, W. C., Asbridge, J. R., Bame, S. J., and Gosling, J. T.: 1977, in O. R. White (ed.), ‘Plasma and Magnetic Fields from the Sun’, The Solar Output and its Variation, Colorado Associated University Press, Boulder, pp. 351.Google Scholar
  10. Feldman, W. C., Asbridge, J. R., Bame, S. J., Fenimore, E. E., and Gosling, J. T.: 1981, ‘The Solar Origins of Solar Wind Interstream Flows Near Equatorial Coronal Streamers’, J. Geophys. Res. 86, 5408.ADSGoogle Scholar
  11. Feldman, W. C., Phillips, J. L., Gosling, J. T., and Isenberg, P. A.: 1996, in D. Winterhalter, J. T. Gosling, S. R. Habbal, W. S. Kurth, and M. Neugebauer (eds.), ‘Electron Impact Ionization Rates for Interstellar H and He Atoms Near Interplanetary Shocks: Ulysses Observations’, Solar Wind Eight, AIP Proc. 382, New York, p. 622.Google Scholar
  12. Feldman, W. C., Phillips, J. L., Barraclough, B. L., and Hammond, C. M.: 1996, in K. C. Tsinganos (ed.), ‘Ulysses Observations of the Solar Wind Out of the Ecliptic Plane’, Solar and Astrophysical Magnetohydrodynamic Flows, Kluwer Academic Publishers, Dordrecht, Holland, pp. 265.Google Scholar
  13. Gosling, J. T.: 1996, in D. Winterhalter, J. T. Gosling, S. R. Habbal, W. S. Kurth, and M. Neugebauer (eds.), ‘Magnetic Topologies of Coronal Mass Ejection Events: Effects of 3-Dimensional Reconnection’, Solar Wind Eight, AIP Proc. 382, New York, pp. 438.Google Scholar
  14. Gosling, J. T. and McComas, D. J.: 1987, ‘Field Line Draping About Fast Coronal Mass Ejecta: a Source of Strong out-of-the Ecliptic Interplanetary Magnetic Fields’, Geophys. Res. Letters 14, 355.ADSGoogle Scholar
  15. Gosling, J. T., Pizzo, V., and Bame, S. J.: 1973, ‘Anomalously Low Proton Temperatures in the Solar Wind Following Interplanetary Shock Waves: Evidence for Magnetic Bottles’, J. Geophys. Res. 78, 2001.CrossRefADSGoogle Scholar
  16. Gosling, J. T., Hildner, E., Asbridge, J. R., Bame, S. J., and Feldman, W. C.: 1977, ‘Noncompressive Density Enhancements in the Solar Wind’, J. Geophys. Res. 82, 5005.ADSGoogle Scholar
  17. Gosling, J. T., Asbridge, J. R., Bame, S. J., and Feldman, W. C.: 1978, ‘Effects of a Long Entrance Aperture upon the Azimuthal Response of Spherical Section Electrostatic Analyzers’, Rev. Sci. Inst. 49, 1260.CrossRefADSGoogle Scholar
  18. Gosling, J. T., Baker, D. N., Bame, S. J., Feldman, W. C., and Zwickl, R. D.: 1987, ‘Bidirectional Solar Wind Electron Heat Flux Events’, J. Geophys. Res. 92, 8519.ADSGoogle Scholar
  19. Gosling, J. T.: 1990, in C. T. Russell, E. R. Priest, and L.C. Lee (eds.), ‘Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space’, Physics of Magnetic Flux Ropes, Geophys. Monogr. 58, American Geophys. Union, pp. 343.Google Scholar
  20. Gosling, J.T., Bame, S. J., Feldman, W. C., McComas, D. J., Phillips, J. L., and Goldstein, B. E.: 1993, ‘Counterstreaming Suprathermal Electron Events Upstream of Corotating Shocks in the Solar Wind Beyond 2 AU: Ulysses’, Geophys. Res. Letters 20, 2335.ADSGoogle Scholar
  21. Gosling, J. T., McComas, D. J., Phillips, J. L., Pizzo, V., Goldstein, B. E., Forsyth, R. J., and Lepping, R. P.: 1995, ‘A CME-Driven Solar Wind Disturbance Observed at Both Low and High Heliographic Latitudes’, Geophys. Res. Letters 22, 1753.CrossRefADSGoogle Scholar
  22. Hammond, C. M., Feldman, W. C., Phillips, J. L., Goldstein, B. E., and Balogh, A.: 1995, ‘Solar Wind Double Ion Beams and the Heliospheric Current Sheet’, J. Geophys. Res. 100, 7881.CrossRefADSGoogle Scholar
  23. Hirshberg, J., Bame, S. J., and Robbins, D. E.: 1972, ‘Solar Flares and Solar Wind Helium Enrichments: July 1965–July 1967’, Solar Phys. 23, 467.CrossRefADSGoogle Scholar
  24. Hundhausen, A. J.: 1977, in J. B. Zirker (ed.), ‘An Interplanetary View of Coronal Holes’, Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder, p. 225.Google Scholar
  25. Hundhausen, A. J.: 1988, in V. Pizzo, T. E. Holzer, and D.G. Sime (eds.), ‘The Origin and Propagation of Coronal Mass Ejections’, Proceedings of the Sixth International Solar Wind Conference, TN 306+Proc., NCAR, Boulder, pp. 181.Google Scholar
  26. Isenberg, P. A. and Feldman, W. C.: 1995, ‘Electron-Impact Ionization of Interstellar Hydrogen and Helium at Interplanetary Shocks’, Geophys. Res. Letters 22, 873.CrossRefADSGoogle Scholar
  27. Kennel, C. F., Scarf, F. L., Coroniti, F. V., Russell, C. T., Wenzel, K. P., Sanderson, T. R., Van Ness, P., Feldman, W. C., Anderson, R. R., Scudder, J. D., and Scholer, M.: 1984, ‘Plasma and Energetic Particle Structure Upstream of a Quasi-Parallel Interplanetary Shock’, J. Geophys. Res. 89, 5419.ADSGoogle Scholar
  28. Klein, L. W. and Burlage, L. F.: 1982, ‘Magnetic Clouds at 1 AU’, J. Geophys. Res. 87, 613.ADSGoogle Scholar
  29. Low, B. C.: 1996, in K. C. Tsinganos (ed.), ‘Magnetohydrodynamic Processes in the Solar Corona: Flares, Coronal Mass Ejections and Magnetic Helicity’, Solar and Astrophysical Magnetohydrodynamic Flows, Kluwer Academic Publishers, Dordrecht, Holland, pp. 133.Google Scholar
  30. Marsden, R. G., Sanderson, T. R., Tranquille, C., Wenzel, K.-P., and Smith, E. J.: 1987, ‘ISEE 3 Observations of Low-Energy Proton Bidirectional Events and Their Relation to Isolated Magnetic Structures’, J. Geophys. Res. 92, 11009.CrossRefADSGoogle Scholar
  31. McComas, D. J. and Bame, S. J.: 1984, ‘Channel Multiplier Compatible Materials and Lifetime Tests’, Rev. Sci. Inst. 55, 463.CrossRefADSGoogle Scholar
  32. McComas, D. J., Gosling, J. T., Phillips, J. L., Bame, S. J., Luhmann, J. G., and Smith, E. J.: 1989, ‘Electron Heat Flux Dropouts in the Solar Wind: Evidence for Interplanetary Magnetic Field Reconnection?’, J. Geophys. Res. 94, 6907.ADSGoogle Scholar
  33. McComas, D. J., Gosling, J. T., Hammond, C. M., Moldwin, M. B., and Phillips, J. L.: 1994, ‘Magnetic Reconnection Ahead of a Coronal Mass Ejection’, Geophys. Res. Letters 21, 1751.CrossRefADSGoogle Scholar
  34. McComas, D. J., Balogh, A., Bame, S. J., Barraclough, B. L., Feldman, W. C., Forsyth, R., Funsten, H. O., Goldstein, B. E., Gosling, J. T., Neugebauer, M., Riley, P., and Skoug, R.: 1998, ‘Ulysses' Return to the Slow Solar Wind’, Geophys. Res. Letters 25, 1.CrossRefADSGoogle Scholar
  35. Montgomery, M. D., Asbridge, J. R., Bame, S. J., and Feldman, W. C.: 1974, ‘Solar Wind Electron Temperature Depressions Following Some Interplanetary Shock Waves: Evidence for Magnetic Merging’, J. Geophys. Res. 79, 3103.ADSGoogle Scholar
  36. Parker, E. N.: 1958, ‘Dynamics of the Interplanetary Gas and Magnetic Fields’, Astrophys. J. 128, 664.CrossRefADSGoogle Scholar
  37. Petschek, H. E.: 1964, ‘Magnetic Field Annihilation, AAS-NASA Symposium on the Physics of Solar Flares’, NASA Spec. Publ., SP-50, pp. 425.Google Scholar
  38. Phillips, J. L., Gosling, J. T., McComas, D. J., Bame, S. J., and Feldman, W. C.: 1992, in S. Fischer and M. Vandes (eds.), ‘Magnetic Topology of Coronal Mass Ejections Based on ISEE-3 Observations of Bidirectional Electron Fluxes at 1 AU’, in Proc. First SOLTIP Symp., Vol. 2, Astron. Inst. Czech Academy of Science Press, Prague, pp. 165.Google Scholar
  39. Phillips, J. L., Bame, S. J., Barnes, A., Barraclough, B. L., Feldman, W. C., Goldstein, B. E., Gosling, J. T., Hoogeveen, G. W., McComas, D. J., Neugebauer, M., and Suess, S. T.: 1995, Geophys. Res. Letters 22, 3301.CrossRefADSGoogle Scholar
  40. Sheeley, N. R., Bohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V. E., and Tousey, R.: 1975, ‘The Reconnection of Magnetic Field Lines in the Solar Corona’, Astrophys. J. 196, 129.CrossRefADSGoogle Scholar
  41. Tsuneta, S.: 1996, in K. C. Tsinganos (ed.), ‘The Dynamic Solar Corona in X-rays with Yohkoh’, Solar and Astrophysical Magnetohydrodynamic Flows, Kluwer Academic Publishers, Dordrecht, Holland, pp. 85.Google Scholar
  42. Von Steiger, R. and Geiss, J.: 1989, ‘Supply of Fractionated Gases to the Corona’, Astron. Astrophys. 225, 222.ADSGoogle Scholar
  43. Zwickl, R., Doggett, K., Sahm, S., Barrett, W., Grubb, R., Detman, T., Raben, V., Smith, C., Riley, P., Gold, R., Mewaldt, R., and Maruyama, T.: 1998, ‘The NOAA Real-Time Solar-Wind (RTSW) System Using ACE Data’, Space Sci. Rev. 86, 633.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D.J. McComas
    • 1
  • S.J. Bame
    • 1
  • P. Barker
    • 1
  • W.C. Feldman
    • 1
  • J.L. Phillips
    • 1
  • P. Riley
    • 1
  • J.W. Griffee
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosU.S.A.
  2. 2.Sandia National LaboratoryAlbuquerqueU.S.A.

Personalised recommendations