Geometriae Dedicata

, Volume 71, Issue 3, pp 263–285

Regular Paper

  • B. Kreuβler
Article

Abstract

We study the algebraic dimension of twistor spaces of positive type over 4CP2. We show that such a twistor space is Moishezon if and only if its anti-canonical class is not nef. More precisely, we show the equivalence of being Moishezon with the existence of a smooth rational curve having negative intersection number with the anticanonical class. Furthermore, we give precise information on the dimension and base locus of the fundamental linear system |-1/2|. This implies, for example, dim|-1/2K| ≤ a(Z). We characterize those twistor spaces over 4CP2, which contain a pencil of divisors of degree one by the property dim|-1/2K| = 3.

twistor space self-dual manifold algebraic dimension rational surface. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AHS] Atiyah, M. F., Hitchin, N. J. and Singer, I.M.: Self–duality in four–dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425–461.Google Scholar
  2. [C1] Campana, F.: The class C is not stable by small deformations, Math. Ann. 290 (1991), 19–30.Google Scholar
  3. [C2] Campana, F.: On Twistor Spaces of the Class C, J. Differential Geom. 33 (1991), 541–549.Google Scholar
  4. [C3] Campana, F.: The class C is not stable by small deformations II, Contemp. Math. 162 (1994), 65–76.Google Scholar
  5. [CK] Campana, F. and Kreußler, B.: Existence of twistor spaces of algebraic dimension two over the connected sum of four complex projective planes, Preprint 1995.Google Scholar
  6. [Dem] Demazure, M.: Surfaces de Del Pezzo II–V, in: Séminaire sur les singularités des surfaces, Lecture Notes in Math. 777, Springer, Berlin, 1980.Google Scholar
  7. [Don] Donaldson, S.: An application of gauge theory to the topology of 4–manifolds, J. Differential Geom. 18 (1983), 279–315.Google Scholar
  8. [DonF] Donaldson, S. and Friedman, R.: Connected sums of self–dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), 197–239.Google Scholar
  9. [Dou] Douady, A.: Le Problème des modules pour les sous–espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, Grenoble 16 (1966), 1–95.Google Scholar
  10. [ES] Eastwood, M. G. and Singer, M. A.: The Fröhlicher Spectral Sequence on a Twistor Space, J. Differential Geom. 38 (1993), 653–669.Google Scholar
  11. [F] Freedman, M.: The topology of four–dimensional manifolds, J. Differential Geom. 17 (1982), 357–454.Google Scholar
  12. [FK] Friedrich, T. and Kurke, H.: Compact four–dimensional self–dual Einstein manifolds with positive scalar curvature, Math. Nachr. 106 (1982), 271–299.Google Scholar
  13. [Gau] Gauduchon, P.: Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Scuola Norm. Sup. Pisa 18 (1991), 563–629.Google Scholar
  14. [GH] Griffiths, P. and Harris, J.: Principles of algebraic geometry, New York: John Wiley, 1978.Google Scholar
  15. [H1] Hitchin, N. J.: Linear field equations on self–dual spaces, Proc. Roy. Soc. London Ser. A 370 (1980), 173–191.Google Scholar
  16. [H2] Hitchin, N. J.: Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), 133–150.Google Scholar
  17. [K1] Kreußler, B.: Small resolutions of double solids, branched over a 13–nodal quartic surface, Ann. Global Anal. Geom. 7 (1989), 227–267.Google Scholar
  18. [K2] Kreußler, B.: Moishezon twistor spaces without effective divisors of degree one, Preprint Nr. 269, Kaiserslautern 1995, to appear in J. Algebraic Geom.Google Scholar
  19. [KK] Kreußler, B. and Kurke, H.: Twistor spaces over the connected sum of 3 projective planes, Compositio Math. 82 (1992), 25–55.Google Scholar
  20. [Ku] Kurke, H.: Classification of twistor spaces with a pencil of surfaces of degree 1, Part I, Math. Nachr. 158 (1992), 67–85.Google Scholar
  21. [LeB1] LeBrun, C.: Explicit self–dual metrics on ℂℙ2#...# ℂℙ2, J. Differential Geom. 34 (1991), 223–253.Google Scholar
  22. [LeB2] LeBrun, C.: Twistors, Kähler manifolds, and bimeromorphic geometry. I, J. Amer. Math. Soc. 5 (1992), 289–316.Google Scholar
  23. [LeBP] LeBrun, C. and Poon, Y. S.: Twistors, Kähler manifolds, and bimeromorphic geometry. II, J. Amer. Math. Soc. 5 (1992), 317–325.Google Scholar
  24. [PP1] Pedersen, H. and Poon, Y. S.: Self–duality and differentiable structures on the connected sum of complex projective planes, Proc. Amer. Math. Soc. 121 (1994), 859–864.Google Scholar
  25. [PP2] Pedersen, H. and Poon, Y. S.: A relative deformation of Moishezon twistor spaces, J. Algebraic Geom. 3 (1994), 685–701.Google Scholar
  26. [Pe] Penrose, R.: Nonlinear gravitons and curved twistor theory, General Relativity Gravitation 7 (1976), 31–52.Google Scholar
  27. [Pon] Pontecorvo, M.: Algebraic dimension of twistor spaces and scalar curvature of anti–self–dual metrics, Math. Ann. 291 (1991), 113–122.Google Scholar
  28. [Po1] Poon, Y. S.: Compact self–dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986), 97–132.Google Scholar
  29. [Po2] Poon, Y. S.: Algebraic dimension of twistor spaces, Math. Ann. 282 (1988), 621–627.Google Scholar
  30. [Po3] Poon, Y. S.: On the algebraic structure of twistor spaces, J. Differential Geom. 36 (1992), 451–491.Google Scholar
  31. [Sch] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479–495.Google Scholar
  32. [U] Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Math. 439, Springer, Berlin, 1975.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • B. Kreuβler
    • 1
  1. 1.FB MathematikUniversität KaiserslautgernKaiserlauternGermany; e-mail

Personalised recommendations