Water, Air, and Soil Pollution

, Volume 110, Issue 3–4, pp 215–237 | Cite as

Estimation and Prediction in the Spatial Linear Model

  • O. Berke
Article

Abstract

Often in environmental monitoring studies interesting ecological factors will be observed at several locations repeatedly over time. Generally these space-time data are subject to a sequential spatial data analysis. In geostatistics, spatial data describing an environmental phenomenon like the pH value in precipitation at several locations are regarded as a realisation from a stochastic process. Component models are used to interpret the spatial variation of the process. Decomposing the spatial process into single components is based on the theory of linear models. Trend surface analysis is seen to be the geostatistical method for best linear unbiased estimation (BLUE) of the trend component, whereas universal kriging is equivalent to best linear unbiased prediction (BLUP) of the realisation of the spatial process. Furthermore trend surface analysis and universal kriging are shown to agree with the estimation of fixed effects and prediction of fixed and random effects in mixed linear models. Since estimation and prediction for spatial data result in different interpolations the differences are explained also graphically by example. The example uses acid-precipitation monitoring data. The extension of these spatial methods for application to space-time problems by combination with dynamic linear models is treated in the discussion.

acid-precipitation best linear unbiased estimation best linear unbiased prediction environmental monitoring geostatistics mixed linear models trend surface analysis universal kriging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agterberg, F. P.: 1984, 'Trend Surface Analysis', in G. L. Gaile and C. J. Willmott (eds.), Spatial Statistics and Models, D. Reidel Publ. Co., Dordrecht, pp. 147–171.Google Scholar
  2. Anscombe, F. J.: 1973, The American Statistican 27, 17.Google Scholar
  3. Barnett, V. and Lewis, T.: 1994, Outliers in Statistical Data, third edition. Wiley, New York.Google Scholar
  4. Berke, O.: 1996a, 'Linear Estimation and Prediction Based on Environmental Monitoring Data with an Application to Acid Precipitation', Research Report 96/1, University of Dortmund, Department of Statistics.Google Scholar
  5. Berke, O.: 1996b, 'On Spatiotemporal Prediction for Online Monitoring Data', Research Report 96/9, University of Dortmund, Department of Statistics. Submitted for publication to Communications in Statistics – Theory and Methods.Google Scholar
  6. Berke, O. and Busch, U.: 1994, 'Statistische Analyse von Räumlich und Zeitlich Verteilten Daten', in E. Kublin and R. Lasser (eds.), Proceedings of the Study Group on Ecology. German Region of the International Biometric Society 6, pp. 17–32.Google Scholar
  7. Box, G. E. P. and Cox, D. R.: 1964, Journal of the Royal Statistical Society B 26, 211.Google Scholar
  8. Brus, D., De Gruijter, J., Marsman, B., Visschers, R., Bregt, A., Breeuwsma, A. and Bouma, J.: 1996, Environmetrics 7, 1.Google Scholar
  9. Busch, U., Brechtel, H. M. and Urfer, W.: 1994, 'Statistical Methods for the Evaluation of Hydrological Parameters in Landuse Planning', in V. Barnett and K. F. Turkman (eds.), Statistics for the Environment 2: Water Related Issues, Wiley, Chichester, pp. 319–344.Google Scholar
  10. Campbell, K.: 1991, Statistical Science 6, 32.Google Scholar
  11. Charlson, R. J. and Rodhe, H.: 1982, Nature 295, 683.Google Scholar
  12. Christakos, G. and Thessing, G. A.: 1993, Atmospheric Environment 27A, 1521.Google Scholar
  13. Christensen, R.: 1987, Plane Answers to Complex Questions: The Theory of Linear Models, Springer, New York.Google Scholar
  14. Christensen, R.: 1990, 'The equivalence of predictions from universal kriging and intrinsic random function kriging', Mathematical Geology 22, 655.Google Scholar
  15. Christensen, R.: 1991, Linear Models for Multivariate, Time Series, and Spatial Data, Springer, New York.Google Scholar
  16. Cressie, N.: 1986, Journal of the American Statistical Association 81, 625.Google Scholar
  17. Cressie, N.: 1993, Statistics for Spatial Data, revised edition. Wiley, New York.Google Scholar
  18. Clark, I.: 1979, Practical Geostatistics, Applied Science Publishers, London.Google Scholar
  19. Goldberger, A. S.: 1962, Journal of the American Statistical Association 57, 369.Google Scholar
  20. Goodall, C. and Mardia, K. V.: 1994, 'Challenges in Multivariate Spatio-Temporal Modelling', Proceedings of the 17th International Biometric Conference 1, pp. 1–17.Google Scholar
  21. Guttorp, P. and Sampson, P. D.: 1994, 'Methods for Estimating Heterogeneous Spatial Covariance Functions with Environmental Applications', in G. P. Patil and C. R. Rao (eds.), Handbook of Statistics XII: Environmental Statistics. North-Holland, Amsterdam, pp. 661–689.Google Scholar
  22. Haining, R. P.: 1987, Technometrics 29, 461.Google Scholar
  23. Handcock, M. S. and Stein, M. L.: 1993, Technometrics 35, 403.Google Scholar
  24. Haslett, J. and Raftery, A. E.: 1989, Applied Statistics 38, 1.Google Scholar
  25. Henderson, C. R.: 1950, The Annals of Mathematical Statistics 21, 309.Google Scholar
  26. Henderson, C. R., Kempthorne, O., Searle, S. R. and von Krosigk, C. N.: 1959, Biometrics 13, 192.Google Scholar
  27. Hölscher, J., Rost, J. and Walther, W.: 1994, Wasser und Boden 1, 20.Google Scholar
  28. Huang, H.-C. and Cressie, N.: 1996, Computational Statistics and Data Analysis 22, 159.Google Scholar
  29. Journal, A. G. and Huijbregts, C. J.: 1978, Mining Geostatistics, Academic Press, London.Google Scholar
  30. Kent, J. T. and Mardia, K. V.: 1994, 'The Link Between Kriging and Thin-Plate Splines', in F. P. Kelly (ed.) Probability, Statistics and Optimization, Wiley, New York, pp. 325–339.Google Scholar
  31. Kitanidis, P.: 1985, Water Resources Bulletin 23, 557.Google Scholar
  32. Laslett, G. M.: 1994, Journal of the American Statistical Association 89, 391.Google Scholar
  33. Martin, R. J.: 1992, Communications in Statistics. Theory and Methods 21, 1183.Google Scholar
  34. Matheron, G.: 1969, 'Le Krigeage Universel', Cahiers du Centre de Morphologie Mathematique, No. 1. Fontainebleau, France.Google Scholar
  35. Rao, C. R. and Toutenburg, H.: 1995, Linear Models: Least Squares and Alternatives, Springer, New York.Google Scholar
  36. Renshaw, E. and Ford, E. D.: 1983, Applied Statistics 32, 51.Google Scholar
  37. Ripley, B. D.: 1981, Spatial Statistics, Wiley, New York.Google Scholar
  38. Robinson. G. K.: 1991, Statistical Science 6, 15.Google Scholar
  39. Sampson, P. D. and Guttorp, P.: 1992, Journal of the American Statistical Association 87, 108.Google Scholar
  40. Shapiro, S. S. and Wilk, M. B.: 1965, Biometrika 52, 591.Google Scholar
  41. Stein, A., 1994, Geoderma 62, 199.Google Scholar
  42. Thiébaux, H. J.: 1991, Environmetrics 2, 5.Google Scholar
  43. Urfer, W.: 1993, 'Statistical Analysis of Climatological and Ecological Factors in Forestry: Spatial and Temporal Aspects', in V. Barnett and K. F. Turkman (eds.), Statistics for the Environment, Wiley, Chichester, pp. 335–345.Google Scholar
  44. Urfer, W., Schwarzenbach, F. H., Kötting, J. and Müller, P.: 1994, Environmental and Ecological Statistics 1, 171.Google Scholar
  45. Watson, G. S.: 1971, Mathematical Geology 3, 215.Google Scholar
  46. Ware, J. H.: 1994, Environmental and Ecological Statistics 1, 196.Google Scholar
  47. West, M. P. and Harrison, P. J.: 1989, Bayesian Forecasting and Dynamic Models, Springer, New York.Google Scholar
  48. Zimmerman, D. L. and Cressie, N.: 1992, Annals of the Institute of Statistical Mathematics 44, 27.Google Scholar
  49. Zimmerman, D. L. and Harville, D. A.: 1991, Biometrics 47, 223.Google Scholar
  50. Zimmerman, D. L. and Zimmerman, M. B.: 1991, Technometrics 33, 77.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • O. Berke
    • 1
  1. 1.Epidemiologie und Informationsverarbeitung, Tierärztliche Hochschule HannoverInstitut für BiometrieHannoverGermany (E-mail

Personalised recommendations