Advertisement

Water, Air, and Soil Pollution

, Volume 110, Issue 1–2, pp 35–55 | Cite as

Environmental Mobility of Radiocaesium in the Pripyat Catchment, Ukraine/Belarus

  • Peter A. Burrough
  • Marcel van der Perk
  • Brenda J. Howard
  • Boris S. Prister
  • Umberto Sansone
  • Oleg V. Voitsekhovitch
Article

Abstract

Evidence from research in the Pripyat catchment, reviewed here, indicates that under the ecological conditions prevalent in this area, radiocaesium (137Cs) is highly mobile in both river water and poorly drained organic soils. Data collected at three different spatial and temporal scales demonstrate the effects of hydrological events on 137Cs mobility. During the period 1988–1994, 137Cs contamination in some poorly drained organic soils in the Pripyat catchment and in the milk from cows grazing on these soils are generally declining much faster than the radioactive half life. However, sharp increases in levels of 137Cs in both floodplain soils and milk to 2–3 times that observed immediately after the initial deposition have been measured immediately after summer floods. The processes causing these observed changes have not yet been fully explained but the sites where enhanced 137Cs mobility has been detected are clearly associated with the spatial patterns of organic soils and river flooding.

Belarus Chernobyl flooding organic soils Pripyat River radiocaesium radionuclide transport Ukraine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asselman, N. E. M.: 1997, Suspended Sediment in th River Rhine, The Impact of Climate Change on Erosion, Transport and Deposition, PhD thesis, Utrecht: KNAG/Faculty of Geographical Sciences, Utrecht University. Netherlands Geographical Studies 234.Google Scholar
  2. Absolom, J. P., Young, S. D. and Crout, N. M. J.: 1995, European Journal of Soil Science 46, 461.Google Scholar
  3. Alexakhin, R., Firsakova, S., Rauret, G., Dalmau, I., Arkhipov, N., Vandecasteele, C., Ivanov, Y., Fesenko, S. and Sanzharova, N.: 1996, 'Fluxes of Radionuclides in Agricultural Environment – Main Results and Still Unresolved Problems', in A. Karaoglou, G. Desmet, G. N. Kelly and H. G. Menzel (eds.), The Radiological Consequences of the Chernobyl Accident, Luxembourg: European Commission EUR 16544 EN, pp. 39–47.Google Scholar
  4. Bell, J. N. B., Minski, M. J. and Grogan, H. A.: 1988, Soil Use and Management 4, 76.Google Scholar
  5. Bonnet, P. J. P.: 1990, Journal of Environmental Radioactivity 11, 251.Google Scholar
  6. Burrough, P. A., Gillespie, M., Howard, B. J., Howard, D. M., Pronevich, V., Prister, B., Strand, P., Skuterud, L. and Desmet, G. M.: 1996a, Redistribution of Chernobyl 137 Cs in Ukraine Wetlands by Flooding, Grange-over-Sands/Utrecht: NERC/ICG.Google Scholar
  7. Burrough, P. A., Gillespie, M., Howard, B. J. and Prister, B.: 1996b, Redistribution of Chernobyl 137 Cs in Ukraine Wetlands by Flooding and Runoff', Proceedings of HydroGIS '96 Conference, Vienna, IAHS Publ. No. 235, 269–277.Google Scholar
  8. Comans, R. J. N., Middelburg, J., Zonderhuis, J. R.W., Woittiez, G. J., de Lange, Das, H. A. and van der Weijden, C. H.: 1989, Nature 339, 367.Google Scholar
  9. Comans, R. J. N., Haller, M. and De Preter, P.: 1991, Geochimica et Cosmochimica Acta 55, 433.Google Scholar
  10. Cremers, A., Elsen, A., De Preter, P. and Maes, A.: 1988, Nature 335, 247.Google Scholar
  11. Deutsch, C. V. and Journel, A.: 1992, Geostatistical Software Library and User's Guide, New York, Oxford University Press.Google Scholar
  12. Hilton, J., Livens, F. R., Spezzano, P. and Leonard, D. R. P.: 1993, The Science of the Total Environment 129, 253.Google Scholar
  13. Hird, A. B., Rimmer, D. L. and Livens, F. R.: 1995, Journal of Environmental Radioactivity 26, 103.Google Scholar
  14. Krouglov, S., Alexakhin, R. and Arkhipov, N.: 1996, 'Long-Term Study on the Behaviour of Chernobyl Fallout Radionuclides in Soil', in A. Karaoglou, G. Desmet, G. N. Kelly and H. G. Menzel (eds.), The Radiological Consequences of the Chernobyl Accident. Luxembourg: European Commission EUR 16544 EN, pp. 201–204.Google Scholar
  15. Kudelsky, A. V., Smith, J. T., Ovsiannikova, S. V. and Hilton, J.: 1996, The Science of the Total Environment 188, 101.PubMedGoogle Scholar
  16. Livens, F. R. and Loveland, P. J.: 1988, Soil Use and Management 4, 69.Google Scholar
  17. Makhonoko, K.P. (ed.), 1990. Manual for Environmental Monitoring Around Nuclear Installations, (in Russian). Leningrad: Gidrometeoizdat, 264 pp.Google Scholar
  18. Middelkoop, H.: 1997, Embanked Floodplains in the Netherlands: Geomorphological Evolution over Various Time Scales, PhD thesis, Utrecht, KNAG/Faculty of Geographical Sciences, Utrecht University, Netherlands Geographical Studies 234.Google Scholar
  19. Nylén, T. and Grip, H.: 1997, 'The Origin and Dynamics of Cs-137 Discharge From a Coniferous Forest Catchment', Journal of Hydrology 192, 338.Google Scholar
  20. Perk, M. van der, unpublished data. Time Series of Discharge and Suspended Sediment Concentrations in the Langbroekerwetering, the Netherlands. Department of Physical Geography, Utrecht University.Google Scholar
  21. Remez, V. P.: 1993, 'Fezhel' Type Sorbent Highly Selective to Caesium Isotopes. IV 'Compomet Cantec Cantec', (English translation).Google Scholar
  22. Sansone, U. and Voitsekhovitch, O.: 1996, Modelling and Study of the Mechanisms of the Transfer of Radioactive Material from Terrestrial Ecosystems to and in Water Bodies around Chernobyl, Experimental Collaboration Project No. 3. Fianl Report EUR 16529 EN. Luxembourg: European Commission.Google Scholar
  23. Sansone, U., Belli, M., Voitsekovitch, O. V. and Kanivets, V. V.: 1996, The Science of the Total Environment 186, 257.Google Scholar
  24. Staunton, S.: 1994, European Journal of Soil Science 45, 409.Google Scholar
  25. Strand, P., Howard, B. and Averin, V. (eds.): 1996, Transfer of Radionuclides to Animals, Their Comparative Importance Under Different Agricultural Ecosystems and Appropriate Countermeasures, Experimental Collaboration Project No. 9. Final Report EUR 16539 EN. Luxembourg: European Commission.Google Scholar
  26. Vakulovsky, S. M. et al.: 1994, J. Environmental Radiocativity 23, 103.Google Scholar
  27. Voigt, G., Rauch, F. and Paretzke, H. G.: 1996, Health Physics 71, 370.PubMedGoogle Scholar
  28. Walling, D. E., Rowan, J. S. and Bradley, S. B.: 1989, 'Sediment-Associated Transport and Redistribution of Chernobyl Fallout Radionuclides', in Sediment and the Environment, Proc. Baltimore Symposium 1989, IAHS Publ. No. 184, pp. 37–45.Google Scholar
  29. Wassen, M. J.: 1995, Wetlands Ecology and Management 3, 125.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Peter A. Burrough
    • 1
  • Marcel van der Perk
    • 1
  • Brenda J. Howard
    • 2
  • Boris S. Prister
    • 3
  • Umberto Sansone
    • 4
  • Oleg V. Voitsekhovitch
    • 5
  1. 1.The Netherlands Centre for Geo-ecological Research (ICG), Department of Physical GeographyUtrecht UniversityUtrechtthe Netherlands
  2. 2.Institute of Terrestrial Ecology, Merlewood Research Station, Windermere Road, Grange-Over-SandsCumbriaU.K
  3. 3.Ukraine Institute of Agricultural RadiologyChabaniUkraine
  4. 4.Agenzia Nazionale per la Protezione dell'Ambiente (ANPA)RomeItaly
  5. 5.Ukrainian HydrometeorologicalInstituteKievUkraine

Personalised recommendations