Solar Physics

, Volume 184, Issue 1, pp 41–60 | Cite as

Short-term periodicities of the sun's ‘mean’ and differential rotation

  • J. Javaraiah
  • R.W. Komm


We have looked for periodicities in solar differential rotation on time scales shorter than the 11-year solar cycle through the power- spectrum analysis of the differential rotation parameters determined from Mt. Wilson velocity data (1969–1994) and Greenwich sunspot group data (1879–1976). We represent the differential rotation by a set of Gegenbauer polynomials (ω(φ)= \(\bar A\) + \(\bar B\) (5sin2φ−1)+ \(\bar C\) (21sin4φ−14sin2φ+1)). For the Mt. Wilson data, we focus on observations obtained after 1981 due to the reduced instrumental noise and have binned the data into intervals of 19 days. We calculated annual averages for the sunspot data to reduce the uncertainty and corrected for outliers occuring during solar cycle minima. The power spectrum of the photospheric ‘mean rotation’ \(\bar A\) , determined from the velocity data during 1982–1994, shows peaks at the periods of 6.7–4.4 yr, 2.2 ± 0.4 yr, 1.2 ± 0.2 yr, and 243 ± 10 day with ≥99.9% confidence level, which are similar to periods found in other indicators of solar activity suggesting that they are of solar origin. However, this result has to be confirmed with other techniques and longer data sets. The 11-yr periodicity is insignificant or absent in \(\bar A\) . The power spectra of the differential rotation parameters \(\bar B\) and \(\bar C\) , determined from the same subset, show only the solar cycle period with a ≥99.9% confidence level.

The time series of \(\bar A\) determined from the yearly sunspot group data obtained during 1879–1976 is very similar to the corresponding time series of \(\bar B\) . After correcting for data with large error bars (occurring during cycle minima), we find periods, which are most likely harmonics of the solar cycle, such as 18.3 ± 3.0 yr and 7.5 ± 0.5 yr in \(\bar A\) and confirmed these and the 3.0 ± 0.1 yr period in . The original time series show in addition some shorter periods, absent in the corrected data, representing temporal variations during cycle minimum. Given their large error bars, it is uncertain whether they represent a solar variation or not. The results presented here show considerable differences in the periodicities of \(\bar A\) and \(\bar B\) determined from the velocity data and the spot group data. These differences may be explained by assuming that the rotation rates determined from velocity and sunspot data represent the rotation rates of the Sun's surface layers and of somewhat deeper layers.


Solar Cycle Differential Rotation Cycle Minimum Time Series Show Sunspot Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antia, H. M. and Chitre, S. M.: 1996, Bull. Astron. Soc. India 24, 321.Google Scholar
  2. Bai, T.: 1994, Solar Phys. 150, 385.Google Scholar
  3. Bai, T. and Sturrock, P. A.: 1991, Nature 350, 141.Google Scholar
  4. Balthasar, H., Vázquez, M., and Wöhl, H.: 1986, Astron. Astrophys. 155, 87.Google Scholar
  5. Brault, J. W. and White, O. R.: 1971, Astron. Astrophys. 13, 169.Google Scholar
  6. Carbonell, M. and Ballester, J. L.: 1992, Astron. Astrophys. 255, 350.Google Scholar
  7. Delache, P., Laclare, F., and Sadsaoud, H: 1985, Nature 317, 416.Google Scholar
  8. D'Silva, S. and Howard, R.: 1994, Solar Phys. 151, 213.Google Scholar
  9. Foukal, P.: 1972, Astrophys. J. 173, 439.Google Scholar
  10. Gilman, P. A. and Howard, R. F.: 1984, Astrophys. J. 283, 385.Google Scholar
  11. Howard, R. F., Gilman, P. A., and Gilman, P. I.: 1984, Astrophys. J. 283, 373.Google Scholar
  12. Howard, R., Adkins, J. M., Boyden, J. E., Cragg, T. A., Gregory, T. S., LaBonte, B. J., Padilla, S. P., and Webster, L.: 1983a, Solar Phys. 83, 321.Google Scholar
  13. Howard, R., Boyden, J. E., Bruning, D. H., Clark, M. K., Crist, H. W., and LaBonte, B. J.: 1983b, Solar Phys. 87, 195.Google Scholar
  14. Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., and Kurokawa, H.: 1985, Nature 316, 422.Google Scholar
  15. Javaraiah, J. and Gokhale, M. H.: 1995, Solar Phys. 158, 173 (Paper I).Google Scholar
  16. Javaraiah, J. and Gokhale, M. H.: 1997a, Solar Phys. 170, 389 (Paper II).Google Scholar
  17. Javaraiah, J. and Gokhale, M. H.: 1997b, Astron. Astophys. 327, 795.Google Scholar
  18. Komm, R. W.: 1995, Solar Phys. 156, 17.Google Scholar
  19. Komm, R. W., Howard, R. F., and Harvey, J. W.: 1993, Solar Phys. 143, 19.Google Scholar
  20. LaBonte, B. J. and Howard, R.: 1982, Solar Phys. 75, 161.Google Scholar
  21. Liritzis, I.: 1995, Solar Phys. 161, 29.Google Scholar
  22. Oliver, R. and Ballester, J. L.: 1995, Solar Phys. 156, 145.Google Scholar
  23. Pierce, A. K. and Lopresto, J. C.: 1984, Solar Phys. 93, 155.Google Scholar
  24. Snodgrass, H. B.: 1984, Solar Phys. 94, 13.Google Scholar
  25. Snodgrass, H. B.: 1992, in Karen L. Harvey (ed.), 'The Solar Cycle', ASP Conf. Series 27, 205.Google Scholar
  26. Snodgrass, H. B. and Howard, R.: 1985, Solar Phys. 95, 221.Google Scholar
  27. Snodgrass, H. B., Howard, R., and Webster, L.: 1984, Solar Phys. 90, 199.Google Scholar
  28. Thomson, D. J.: 1990, Phil. Trans. Royal Soc. London A330, 601.Google Scholar
  29. Ulrich, R. K. and Bertello, L.: 1996, Astrophys. J. 465, L65.Google Scholar
  30. Walther, G.: 1998, Phys. Rev. Letters 79, 4522.Google Scholar
  31. Ward, F.: 1966, Astrophys. J. 145, 416.CrossRefGoogle Scholar
  32. Woodard, M. F. and Libbrecht, K. G., 1993, Astrophys. J. 402, L77.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J. Javaraiah
    • 1
  • R.W. Komm
    • 2
  1. 1.Indian Institute of AstrophysicsBangaloreIndia
  2. 2.National Solar Observatory, National Optical Astronomy ObservatoriesTucsonU.S.A

Personalised recommendations