Water, Air, and Soil Pollution

, Volume 105, Issue 3–4, pp 617–642 | Cite as

Reduced-Form Modelling of Surface Water and Soil Chemistry for the Tracking and Analysis Framework

  • R. Sinha
  • M. J. Small
  • P. F. Ryan
  • T. J. Sullivan
  • B. J. Cosby
Article

Abstract

A reduced-from modelling approach is used to predict soil and lake acidification as part of an integrated assessment of acid deposition effects and control strategies. The reduced-form model is based upon the mechanistic, lumped parameter watershed chemistry model, MAGIC (Model of Acidification of Groundwater in Catchments). Recent improvements to MAGIC are described, and its reduced-form representation in the Tracking and Analysis Framework (TAF), an integrated assessment model for decision and uncertainty analysis, is presented. Reduced-form models are developed for lake acid neutralising capacity (ANC), calcium, pH, and aluminium; and for soil base saturation. The model for lake ANC incorporates long-term depletion of the watershed acid neutralisation fraction, as is predicted to occur with MAGIC. In test calibrations for 33 representative watersheds in the Adirondacks, the resulting reduced-form model provides a close approximation to MAGIC, with average root mean square errors of 0.79 μeq l-1 for ANC, 1.09 μeq l-1 for calcium, 0.16 for pH, 2.52 μeq l-1 for aluminium, and 0.09% for soil base saturation. In addition, improved fish viability models are incorporated in the integrated assessment model, and predictions are demonstrated for a future deposition reduction scenario for the Adirondack region.

acid deposition Adirondacks integrated assessment lake acidification mathematical model reduced-form modelling soil acidification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcamo, J., Amann, M., Hettelingh, J., Holmberg, M., Hordijk, L., Kämäri, J., Kauppi, L., Kauppi, P., Kornai, G. and Makela, M.: 1987, “Acidification in Europe: A Simulation Model for Evaluating Control Stretegies”, Ambio 16(5), 232–245.Google Scholar
  2. Baker, J. P., Bernard, D. P., Christensen, S. W., Scale, M. J., Freda, J., Heltcher, K., Marmorek, D., Rowe, L., Scanlon, P., Suter, G., Warren-Hicks, W. and Welbourn, P.: 1990, “Biological Effects of Changes in Surface Water Acid Base Chemistry“, NAPAP Report 13 in: State of Science and Technology, Volume II, National Acid Precipitation Assessment Program, Washington, DC.Google Scholar
  3. Cosby, B. J., Wright, R. F., Gjessing, E., 1995a, “An Acidification Model (MAGIC) with Organic Acids Evaluation Using Whole-Catchment Manipulations in Norway”, J. Hydrol, 170, 101–122.Google Scholar
  4. Cosby, B. J., Norton, S. A. and Kahl, J. S.: 1995b, “Using a Paired-Watershed Manipulation Experiment to Evaluate a Catchment-Scale Biogeochemical Model”, Sci. Tot. Environ (in press).Google Scholar
  5. Cosby, B. J., Hornberger, G. M. and Galloway, J. N.: 1995a, “Modelling the Effects of Acid Deposition: Assessment of a Lumped parameter Model of Soil Water and Streamwater Chemistry”, Water Resour. Res. 21, 51–63.Google Scholar
  6. Cosby, B. J., Hornberger, G. M. and Galloway, J. N.: 1985b, “Modelling the Effects of Acid Deposition: Estimation of Long-Term Water Quality Responses in a Small Forested Catchment”, Water Resour. Res., 21, 1591–1601.Google Scholar
  7. Ferrier, R. C., Jenkins, A., Cosby, B. J. and Wright, R. F., “Changes in Acidification of Lochs in Galloway, Southwestern Scotland II: The Relative Effects of Acid Deposition and Afforestation”, J. Hydrol. (in review).Google Scholar
  8. Hordijk, L.: 1991, “Use of the RAINS Model in Acid Rain Negotiations in Europe”, Environ. Sci. Tech., Vol. 25,No. 4, 596–603.Google Scholar
  9. Husar, R. B., Sullivan, T. J. and Charles, D. F.: 1991, “Historical Trends in Atmospheric Sulfur Deposition and Methods for Assessing LongTerm Trends in Surface Water Chemistry”, Acid Deposition and Aquatic Ecosystems: Regional case Studies, D. F. Charles, Ed., Springer-Verlag, New York, 65–82.Google Scholar
  10. Jenkins, A., Whitehead, P. G., Cosby, B. J. and Birks, H. J. B.L.: 1990, “Modelling Long-Term Acidification: A Comparison with Diatom Reconstructions and the Implications for Reversibility”, Phil. Trans. R. Soc. Lond. B., 327, 435–440.Google Scholar
  11. Kämäari, J. (ed.),: 1990, Impact Models to Assess Regional Acidification, Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  12. Kanciruk, P., Eilers, J. M., McCord, R. A., Landers, D. H., Brakke, D. F. and Linthurst, R. A., June 1986, “Characteristics of Lakes in the Eastern United States”, Vol. III, EPA Report No. EPA/600/486/007c.Google Scholar
  13. Linthurst, R. A., Landers, D. H., Eilers, J., M., Keller, P. E., Brakke., Overton, W. S., Crowe, R., Meier, E. P., Kanciruk, P. and Jeffries, D. S.: 1986, “Regional Chemical Characteristics of Lakes in North America Part II: Eastern United States”, Water Air Soil Pollut. 31, 577–591.Google Scholar
  14. Lumina Decision Systems,: 1996, Analytica v. 1.0 (http://www. lumina.com), Palo Alto, CA.Google Scholar
  15. NAPAP Integrated Assessment Report, November 1991, National Acid Precipitation Assessment Program, Washington, D.C.Google Scholar
  16. Overton, W. S., Kanciruk, P., Hook, L. A., Eilers, J. M., Landers, D. H., Brakke, D. F., Blick Jr., D. J., Linthurst, R. A., DeHaan, M. D., and Omernik, J. M., June 1986, “Characteristics of Lakes in the Eastern United States”, Vol. II, EPA Report No. EPA/600/486/ 007b.Google Scholar
  17. Posch, M. and Kämàri, J.: 1990, “Modelling Regional Acidification of Finnish Lakes”, Impact Models to Assess Regional Acidification, J. Kämäri, (Ed.), Kluwer Academic, Dordrecht, The Netherlands, 145–166.Google Scholar
  18. Sinha, R., May 1996, “tegrated Assessment of Acid Deposition Impacts Using Reduced-Form Modelling”, M. S. Dissertation, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  19. Small, M. J., Cosby, B. J., Marnicio, R. J. and Henrion, M.: 1995, “Joint Application of an Empirical and Mechanistic Model for Regional Lake Acidification”, Environmental Monitoring and Assessment 35, 113–136.Google Scholar
  20. Small, M. J. and Sutton, M. C.: 1986a, “A Regional pH-Alkalinity Relationship”, Wat. Res. 20, 335–343.Google Scholar
  21. Small, Mitchell, J. and Sutton, Michael, C.: 1986b, “A Direct Distribution Model for Regional Aquatic Acidification”, Water Resour. Res. 22, 1749–1758.Google Scholar
  22. Small, Mitchell J., Sutton, Michael C. and Milke, Mark, W.: 1988, “Parametric Distributions of Regional Lake Chemistry: Fitted and Derived”, Environ. Sci. Tech., Vol. 22,No. 2, 196–204.Google Scholar
  23. Sullivan, T. J. and Cosby, B. J.: 1995a, “Testing, Improvement and Confirmation of a Watershed Model of Acid-Base Chemistry”, Water Air Soil Pollut. 85, 2607–2612.Google Scholar
  24. Sullivan, T. J. and Cosby, B. J.: 1995b, “MAGIC Model Applications for Surface and Soil Waters as Input to the Tracking and Analysis Framework (TAF)”, Report No. DOE/ER/301967, Report prepared for The U.S. Department of Energy under Agreement No. DOEFG0292ER30196.Google Scholar
  25. Sullivan, T. J. and Cosby, B. J.: “Modelling the Concentration of Aluminium in Surface Waters”, Water Air Soil Pollut. (in press).Google Scholar
  26. Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Hemond, H. F., Charles, D. F., Norton, S. A., Seip, H. M. and Taugøl, G.: 1994, “Confirmation of the MAGIC Model Using Independent Data: Influence of Organic Acids in Model Estimates of Lakewater Acidification”, Report No. DOE/ER/301964, Final Report prepared for The U.S. Department of Energy under Agreement No. DOEFG0292ER30196.Google Scholar
  27. Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Charles, D. F. and Hemond, H. F.: 1996a, “Influence of Organic Acids on Model Projections of Lake Acidification”, Water Air Soil Pollut. 91, 271–282.Google Scholar
  28. Sullivan, T. J., Eilers, J.M., Cosby, B. J. and Vaché, K. B.: 1996b, “Increasing Role of Nitrogen in the Acidification of Surface Waters in the Adirondack Miuntains, New York”,Water Air Soil Pollut. (in press).Google Scholar
  29. Thornton, K. W., Marmorek, D., Ryan, P. F., Heltcher, K. and Robinson, D.: 1990, “Methods for Projecting Future Changes in Surface Water Acid Base Chemistry”, NAPAO Report 14 in: NAPAP State of Science and Technology, Volume II, National Acid Precipitation Assessment Program. Washington, D.C.Google Scholar
  30. Wright, R. F., Cosby, B. J., Flaten, M. B. and Reuss, J. O.: 1990, “Evaluation of an Acidification Model with Data from Manipulated Catchments in Norway”, Nature 343, 53–55.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • R. Sinha
    • 1
  • M. J. Small
    • 2
  • P. F. Ryan
    • 3
  • T. J. Sullivan
    • 4
  • B. J. Cosby
    • 5
  1. 1.Department of Civil and Environmental EngineeringCarnegie Mellon UniversityPittsburgh
  2. 2.Departments of Civil and Environmental Engineering and Engineering and Public PolicyCarnegie Mellon UniversityPittsburghU.S.A. email
  3. 3.Science Applications International CorporationOak RidgeU.S.A. email
  4. 4.E&S Environmental Chemistry, Inc.CorvallisU.S.A
  5. 5.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleU.S.A. email

Personalised recommendations